Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 1092, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676820

RESUMO

Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

2.
New Phytol ; 205(1): 216-39, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25187269

RESUMO

In this study, we investigated the cellular and molecular mechanisms that regulate salt acclimation. The main objective was to obtain new insights into the molecular mechanisms that control salt acclimation. Therefore, we carried out a multidisciplinary study using proteomic, transcriptomic, subcellular and physiological techniques. We obtained a Nicotiana tabacum BY-2 cell line acclimated to be grown at 258 mM NaCl as a model for this study. The proteomic and transcriptomic data indicate that the molecular response to stress (chaperones, defence proteins, etc.) is highly induced in these salt-acclimated cells. The subcellular results show that salt induces sodium compartmentalization in the cell vacuoles and seems to be mediated by vesicle trafficking in tobacco salt-acclimated cells. Our results demonstrate that abscisic acid (ABA) and proline metabolism are crucial in the cellular signalling of salt acclimation, probably regulating reactive oxygen species (ROS) production in the mitochondria. ROS may act as a retrograde signal, regulating the cell response. The network of endoplasmic reticulum and Golgi apparatus is highly altered in salt-acclimated cells. The molecular and subcellular analysis suggests that the unfolded protein response is induced in salt-acclimated cells. Finally, we propose that this mechanism may mediate cell death in salt-acclimated cells.


Assuntos
Aclimatação/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Nicotiana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Vesículas Transportadoras/metabolismo , Ácido Abscísico/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspases/metabolismo , Linhagem Celular , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/ultraestrutura , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Proteoma/metabolismo , Tolerância ao Sal , Sódio/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/ultraestrutura , Transcriptoma/genética , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/ultraestrutura
3.
J Plant Physiol ; 171(5): 64-75, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24484959

RESUMO

Adaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate conditions and expose them to control (0mM NaCl), and two levels of salinity; medium (75mM NaCl) and high (150mM NaCl). Relative growth rate (RGR), biomass production, whole plant and leaf structure and ultrastructure adaptation, gas exchange, chlorophyll fluorescence, nutrients location in leaf tissue and its balance in the plant are studied. RGR and total biomass decreased as NaCl concentration increased in the nutrient solution. At 75mM NaCl root biomass was not affected by salinity and RGR reached similar values to control plants at the end of the experiment. At this salinity level henna plant responded to salinity decreasing shoot to root ratio, increasing leaf specific mass (LSM) and intrinsic water use efficiency (iWUE), and accumulating high concentrations of Na(+) and Cl(-) in leaves and root. At 150mM NaCl growth was severely reduced but plants reached the reproductive phase. At this salinity level, no further decrease in shoot to root ratio or increase in LSM was observed, but plants increased iWUE, maintaining water status and leaf and root Na(+) and Cl(-) concentrations were lower than expected. Moreover, plants at 150mM NaCl reallocated carbon to the root at the expense of the shoot. The effective PSII quantum yield [Y(II)] and the quantum yield of non-regulated energy dissipation [Y(NO)] were recovered over time of exposure to salinity. Overall, iWUE seems to be determinant in the adaptation of henna plant to high salinity level, when morphological adaptation fails.


Assuntos
Adaptação Fisiológica , Lawsonia (Planta)/fisiologia , Tolerância ao Sal , Cloreto de Sódio/metabolismo , Água/metabolismo , Clima Desértico , Microanálise por Sonda Eletrônica , Lawsonia (Planta)/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Imagem Óptica , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/metabolismo , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA