Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Inorg Chem ; 63(20): 9014-9025, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38723621

RESUMO

Electron-coupled-proton buffers (ECPBs) store and deliver protons and electrons in a reversible fashion. We have recently reported an ECPB based on Cu and a redox-active ligand that promoted 4H+/4e- reversible transformations (J. Am. Chem. Soc. 2022, 144, 16905). Herein, we report a series of Cu-based ECPBs in which the ability of these to accept and/or donate H• equivalents can be tuned via ligand modification. The thermochemistry of the 4H+/4e- ECPB equilibrium was determined using open-circuit potential measurements. The reactivity of the ECPBs against proton-coupled electron transfer (PCET) reagents was also analyzed, and the results obtained were rationalized based on the thermochemical parameters. Experimental and computational analysis of the thermochemistry of the H+/e- transfers involved in the 4H+/4e- ECPB transformations found substantial differences between the stepwise (namely, BDFE1, BDFE2, BDFE3, and BDFE4) and average bond dissociation free energy values (BDFEavg.). Our analysis suggests that this "redox unleveling" is critical to promoting the disproportionation and ligand-exchange reactions involved in the 4H+/4e- ECPB equilibria. The difference in BDFEavg. within the series of Cu-based ECPBs was found to arise from a substantial change in the redox potential (E1/2) upon modification of the ligand scaffold, which is not fully compensated for by a change in the acidity/basicity (pKa), suggesting "thermochemical decompensation".

2.
J Org Chem ; 89(4): 2622-2636, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38324058

RESUMO

Herein, we describe the regioselective functionalization of unsymmetrical ketones using imine directing groups, Cu, and H2O2. The C-H hydroxylation of the substrate-ligands derived from 2-substituted benzophenones occurred exclusively at the γ-position of the unsubstituted ring due to the formation of only one imine stereoisomer. Conversely, the imines derived from 4-substituted benzophenones produced E/Z mixtures that upon reacting with Cu and H2O2 led to two γ-C-H hydroxylation products. Contrary to our initial hypothesis, the ratio of the hydroxylation products did not depend on the ratio of the E/Z isomers but on the electrophilicity of the reactive [LCuOOH]1+. A detailed mechanistic analysis suggests a fast isomerization of the imine substrate-ligand binding the CuOOH core before the rate-determining electrophilic aromatic hydroxylation. Varying the benzophenone substituents and/or introducing electron-donating and electron-withdrawing groups on the 4-position of pyridine of the directing group allowed for fine-tuning of the electrophilicity of the mononuclear [LCuOOH]1+ to reach remarkable regioselectivities (up to 91:9 favoring the hydroxylation of the electron-rich arene ring). Lastly, we performed the C-H hydroxylation of alkyl aryl ketones, and like in the unsymmetrical benzophenones, the regioselectivity of the transformations (sp3 vs sp2) could be controlled by varying the electronics of the substrate and/or the directing group.

3.
J Am Chem Soc ; 144(37): 16905-16915, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36083845

RESUMO

In this research article, we describe a 4H+/4e- electron-coupled-proton buffer (ECPB) based on Cu and a redox-active ligand. The protonated/reduced ECPB (complex 1: [Cu(8H+/14e-)]1+), consisting of CuI with 2 equiv of the ligand (catLH4: 1,1'-(4,5-dimethoxy-1,2-phenylene)bis(3-(tert-butyl)urea)), reacted with H+/e- acceptors such as O2 to generate the deprotonated/oxidized ECPB. The resulting compound, (complex 5: [Cu(4H+/10e-)]1+), was characterized by X-ray diffraction analysis, nuclear magnetic resonance (1H-NMR), and density functional theory, and it is electronically described as a cuprous bis(benzoquinonediimine) species. The stoichiometric 4H+/4e- reduction of 5 was carried out with H+/e- donors to generate 1 (CuI and 2 equiv of catLH4) and the corresponding oxidation products. The 1/5 ECPB system catalyzed the 4H+/4e- reduction of O2 to H2O and the dehydrogenation of organic substrates in a decoupled (oxidations and reductions are separated in time and space) and a coupled fashion (oxidations and reductions coincide in time and space). Mechanistic analysis revealed that upon reductive protonation of 5 and oxidative deprotonation of 1, fast disproportionation reactions regenerate complexes 5 and 1 in a stoichiometric fashion to maintain the ECPB equilibrium.


Assuntos
Elétrons , Prótons , Cobre/química , Ligantes , Oxirredução , Ureia
4.
European J Org Chem ; 2021(32): 4536-4540, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34539234

RESUMO

In this article, we describe simple one-pot syntheses of 2H-1,3-benzoxazines from ketones utilizing an imino-pyridine directing group (R1R2-C=N-CH2-Pyr), which promotes a Cu-directed sp2 hydroxylation using H2O2 as oxidant and followed by an oxidative intramolecular C-O bond formation upon addition of NEt3. This synthetic protocol is utilized in the gram scale synthesis of the 2H-1,3-benzoxazine derived from benzophenone. Mechanistic studies reveal that the cyclization occurs via deprotonation of the benzylic position of the directing group to produce a 2-azallyl anion intermediate, which is oxidized to the corresponding 2-azaallyl radical before the C-O bond formation event. Understanding of the cyclization mechanism also allowed us to develop reaction conditions that utilize catalytic amounts of Cu.

5.
J Inorg Biochem ; 223: 111557, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352714

RESUMO

In this research article, we describe the Cu-promoted intramolecular hydroxylation of sp2 and sp3 CH bonds using directing groups with varying denticity (bi-, tri- and tetradentate) and natural oxidants (O2 and H2O2). We found that bidentate directing groups, in combination with Cu and H2O2, led to high hydroxylation yields. On the other hand, tetradentate directing groups did not form the hydroxylation products. Our mechanistic investigations suggest that bidentate directing groups allow for generating reactive mononuclear copper(II) hydroperoxide intermediates while tetradentate systems form dinuclear Cu2O2 species that do not oxidize CH bonds. Our findings might shed light on the reaction mechanism(s) by which Cu-dependent metalloenzymes such as particulate methane monooxygenase or lytic polysaccharide monooxygenase oxidize strong CH bonds.


Assuntos
Álcoois/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Cobre/química , Peróxido de Hidrogênio/química , Hidroxilação , Ligantes , Oxigênio/química
6.
Chem Asian J ; 16(12): 1608-1618, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33929787

RESUMO

In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox-active ligands with tunable H-bonding donors. The mononuclear Cu-anion complexes were oxidized to the corresponding "high-valent" intermediates by oxidation of the redox-active ligand. These species were capable of oxidizing phenols with weak O-H bonds via H-atom abstraction. Thermodynamic analysis of the H-atom abstractions, which included reduction potential measurements, pKa determination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H-bonding donor did not lead to major differences in the reactivity of the "high-valent" CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+ and e- acceptor.

7.
ACS Catal ; 11(16): 10267-10278, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36188417

RESUMO

Copper-containing metalloenzymes constitute a major class of proteins which catalyze a myriad of reactions in nature. Inspired by the structural and functional characteristics of this unique class of metalloenzymes, we report the conception, design, characterization, and functional studies of a de novo artificial copper peptide (ArCuP) within a trimeric self-assembled polypeptide scaffold that activates and reduces peroxide. Using a first principles approach, the ArCuP was designed to coordinate one Cu via three His residues introduced at an a site of the peptide scaffold. X-ray crystallographic, UV-vis and EPR data demonstrate that Cu binds via the Nε atoms of His forming a T2Cu environment. When reacted with hydrogen peroxide, the putative copper-hydroperoxo species is formed where a reductive priming step accelerates the rate of its formation and reduction. Mass spectrometry was used to identify specific residues undergoing oxidative modification, which showed His oxidation only in the reduced state. The redox behavior of the ArCuP was elucidated by protein film voltammetry. Detailed characterization of the electrocatalytic behavior of the ArCuP led us to determine the catalytic parameters (KM, kcat), which established the peroxidase activity of the ArCuP. Combined spectroscopic and electrochemical data showed a pH-dependence on the reactivity, which was optimum at pH 7.5.

8.
J Am Chem Soc ; 142(28): 12265-12276, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531159

RESUMO

Structural, spectroscopic, and reactivity studies are presented for an electron transfer series of copper hydroxide complexes supported by a tridentate redox-active ligand. Single crystal X-ray crystallography shows that the mononuclear [CuOH]1+ core is stabilized via intramolecular H-bonds between the H-donors of the ligand and the hydroxide anion when the ligand is in its trianionic form. This complex undergoes two reversible oxidation processes that produce two metastable "high-valent" CuOH species, which can be generated by addition of stoichiometric amounts of 1e- oxidants. These CuOH species are characterized by an array of spectroscopic techniques including UV-vis absorption, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopies (XAS), which together indicate that all redox couples are ligand-localized. The reactivity of the complexes in their higher oxidation states toward substrates with modest O-H bond dissociation energies (e.g., 4-substitued-2,6-di-tert-butylphenols) indicates that these complexes act as 2H+/2e- oxidants, differing from the 1H+/1e- reactivity of well-studied [CuOH]2+ systems.


Assuntos
Cobre/química , Hidróxidos/química , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Oxirredução , Espectrofotometria Ultravioleta , Espectroscopia por Absorção de Raios X
9.
Inorg Chem ; 58(11): 7584-7592, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31084018

RESUMO

The use of copper for C-H bond functionalization, compared to other metals, is relatively unexplored. Herein, we report a synthetic protocol for the regioselective hydroxylation of sp2 and sp3 C-H bonds using a directing group, stoichiometric amounts of Cu and H2O2. A wide array of aromatic ketones and aldehydes are oxidized in the carbonyl γ-position with remarkable yields. We also expanded this methodology to hydroxylate the ß-position of alkylic ketones. Spectroscopic characterization, kinetics, and density functional theory calculations point toward the involvement of a mononuclear LCuII(OOH) species, which oxidizes the aromatic sp2 C-H bonds via a concerted heterolytic O-O bond cleavage with concomitant electrophilic attack on the arene system.

10.
Chem Rev ; 119(4): 2954-3031, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30698952

RESUMO

Copper is one of the most abundant and less toxic transition metals. Nature takes advantage of the bioavailability and rich redox chemistry of Cu to carry out oxygenase and oxidase organic transformations using O2 (or H2O2) as oxidant. Inspired by the reactivity of these Cu-dependent metalloenzymes, chemists have developed synthetic protocols to functionalize organic molecules under enviormentally benign conditions. Copper also promotes other transformations usually catalyzed by 4d and 5d transition metals (Pd, Pt, Rh, etc.) such as nitrene insertions or C-C and C-heteroatom coupling reactions. In this review, we summarized the most relevant research in which copper promotes or catalyzes the functionalization of organic molecules, including biological catalysis, bioinspired model systems, and organometallic reactivity. The reaction mechanisms by which these processes take place are discussed in detail.


Assuntos
Cobre/química , Compostos Orgânicos/síntese química , Oxigênio/química , Catálise , Complexos de Coordenação/química , Modelos Químicos , Compostos Organometálicos/química , Oxirredução
11.
J Coord Chem ; 72(8): 1346-1357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34113052

RESUMO

In this research article, we report the synthesis and structural characterization of a family of first-row metal complexes bearing redox-active ligands with tunable H-bonding donors. We observed that these coordination complexes can adopt three different geometries and that they are stabilized by intramolecular multicenter H-bonding interactions, which are systematically modified by changing the metal ion (Co, Ni, Cu, Zn), the ligand scaffold (variations in the diamine and ureanyl substituents used) and the solvent of crystallization.

12.
J Am Chem Soc ; 140(48): 16625-16634, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400740

RESUMO

In this research article, we describe the structure, spectroscopy, and reactivity of a family of copper complexes bearing bidentate redox-active ligands that contain H-bonding donor groups. Single-crystal X-ray crystallography shows that these tetracoordinate complexes are stabilized by intramolecular H-bonding interactions between the two ligand scaffolds. Interestingly, the Cu complexes undergo multiple reversible oxidation-reduction processes associated with the metal ion (CuI, CuII, CuIII) and/or the o-phenyldiamido ligand (L2-, L•-, L). Moreover, some of the CuII complexes catalyze the aerobic oxidation of alcohols to aldehydes (or ketones) at room temperature. Our extensive mechanistic analysis suggests that the dehydrogenation of alcohols occurs via an unusual reaction pathway for galactose oxidase model systems, in which O2 reduction occurs concurrently with substrate oxidation.


Assuntos
Álcoois/química , Complexos de Coordenação/química , Cobre/química , Aldeídos/síntese química , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Catálise , Complexos de Coordenação/síntese química , Glucose Oxidase/química , Ligação de Hidrogênio , Cetonas/síntese química , Ligantes , Modelos Químicos , Estrutura Molecular , Oxirredução , Oxigênio/química
13.
J Org Chem ; 82(15): 7887-7904, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28654755

RESUMO

The use of copper in directed C-H oxidation has been relatively underexplored. In a seminal example, Schönecker showed that copper and O2 promoted the hydroxylation of steroid-containing ligands. Recently, Baran (J. Am. Chem. Soc. 2015, 137, 13776) improved the reaction conditions to oxidize similar substrates with excellent yields. In both reports, the involvement of Cu2O2 intermediates was suggested. In this collaborative article, we studied the hydroxylation mechanism in great detail, resulting in the overhaul of the previously accepted mechanism and the development of improved reaction conditions. Extensive experimental evidence (spectroscopic characterization, kinetic analysis, intermolecular reactivity, and radical trap experiments) is provided to support each of the elementary steps proposed and the hypothesis that a key mononuclear LCuII(OOR) intermediate undergoes homolytic O-O cleavage to generate reactive RO• species, which are responsible for key C-H hydroxylation within the solvent cage. These key findings allowed the oxidation protocol to be reformulated, leading to improvements of the reaction cost, practicability, and isolated yield.


Assuntos
Cobre/química , Óxidos/química , Esteroides/síntese química , Hidroxilação , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Esteroides/química
14.
J Am Chem Soc ; 139(8): 3186-3195, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28195739

RESUMO

Copper-dependent metalloenzymes are widespread throughout metabolic pathways, coupling the reduction of O2 with the oxidation of organic substrates. Small-molecule synthetic analogs are useful platforms to generate L/Cu/O2 species that reproduce the structural, spectroscopic, and reactive properties of some copper-/O2-dependent enzymes. Landmark studies have shown that the conversion between dicopper(II)-peroxo species (L2CuII2(O22-) either side-on peroxo, SP, or end-on trans-peroxo, TP) and dicopper(III)-bis(µ-oxo) (L2CuIII2(O2-)2: O) can be controlled through ligand design, reaction conditions (temperature, solvent, and counteranion), or substrate coordination. We recently published ( J. Am. Chem. Soc. 2012 , 134 , 8513 , DOI: 10.1021/ja300674m ) the crystal structure of an unusual SP species [(MeAN)2CuII2(O22-)]2+ (SPMeAN, MeAN: N-methyl-N,N-bis[3-(dimethylamino)propyl]amine) that featured an elongated O-O bond but did not lead to O-O cleavage or reactivity toward external substrates. Herein, we report that SPMeAN can be activated to generate OMeAN and perform the oxidation of external substrates by two complementary strategies: (i) coordination of substituted sodium phenolates to form the substrate-bound OMeAN-RPhO- species that leads to ortho-hydroxylation in a tyrosinase-like fashion and (ii) addition of stoichiometric amounts (1 or 2 equiv) of Lewis acids (LA's) to form an unprecedented series of O-type species (OMeAN-LA) able to oxidize C-H and O-H bonds. Spectroscopic, computational, and mechanistic studies emphasize the unique plasticity of the SPMeAN core, which combines the assembly of exogenous reagents in the primary (phenolates) and secondary (Lewis acids association to the MeAN ligand) coordination spheres with O-O cleavage. These findings are reminiscent of the strategy followed by several metalloproteins and highlight the possible implication of O-type species in copper-/dioxygen-dependent enzymes such as tyrosinase (Ty) and particulate methane monooxygenase (pMMO).


Assuntos
Cobre/química , Ácidos de Lewis/química , Oxigênio/química , Fenóis/química , Estrutura Molecular , Oxirredução , Teoria Quântica
15.
J Am Chem Soc ; 139(1): 472-481, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28029788

RESUMO

The 4H+/4e- reduction of O2 to water, a key fuel-cell reaction also carried out in biology by oxidase enzymes, includes the critical O-O bond reductive cleavage step. Mechanistic investigations on active-site model compounds, which are synthesized by rational design to incorporate systematic variations, can focus on and resolve answers to fundamental questions, including protonation and/or H-bonding aspects, which accompany electron transfer. Here, we describe the nature and comparative reactivity of two low-spin heme-peroxo-Cu complexes, LS-4DCHIm, [(DCHIm)F8FeIII-(O22-)-CuII(DCHIm)4]+, and LS-3DCHIm, [(DCHIm)F8FeIII-(O22-)-CuII(DCHIm)3]+ (F8 = tetrakis(2,6-difluorophenyl)-porphyrinate; DCHIm = 1,5-dicyclohexylimidazole), toward different proton (4-nitrophenol and [DMF·H+](CF3SO3-)) (DMF = dimethyl-formamide) or electron (decamethylferrocene (Fc*)) sources. Spectroscopic reactivity studies show that differences in structure and electronic properties of LS-3DCHIm and LS-4DCHIm lead to significant differences in behavior. LS-3DCHIm is resistant to reduction, is unreactive toward weakly acidic 4-NO2-phenol, and stronger acids cleave the metal-O bonds, releasing H2O2. By contrast, LS-4DCHIm forms an adduct with 4-NO2-phenol, which includes an H-bond to the peroxo O-atom distal to Fe (resonance Raman (rR) spectroscopy and DFT). With addition of Fc* (2 equiv overall required), O-O reductive cleavage occurs, giving water, Fe(III), and Cu(II) products; however, a kinetic study reveals a one-electron rate-determining process, ket = 1.6 M-1 s-1 (-90 °C). The intermediacy of a high-valent [(DCHIm)F8FeIV═O] species is thus implied, and separate experiments show that one-electron reduction-protonation of [(DCHIm)F8FeIV═O] occurs faster (ket2 = 5.0 M-1 s-1), consistent with the overall postulated mechanism. The importance of the H-bonding interaction as a prerequisite for reductive cleavage is highlighted.


Assuntos
Cobre/química , Compostos Férricos/química , Heme/química , Compostos Organometálicos/química , Oxigênio/química , Prótons , Peróxido de Hidrogênio/análise , Cinética , Oxirredução , Teoria Quântica
16.
Angew Chem Int Ed Engl ; 55(41): 12873-6, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27610603

RESUMO

Copper complexes bearing readily available ligand systems catalyzed the oxidation of alkanes with H2 O2 as the oxidant with high efficiency in remarkable yields (50-60 %). The reactions proceeded with unprecedented selectivity to give alkyl hydroperoxides as the major products. Detailed scrutiny of the reaction mechanism suggests the involvement of C-centered and O-centered radicals generated in a Fenton-like fashion.

17.
Chemistry ; 22(15): 5133-7, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26919169

RESUMO

We report the Cu(I)/O2 chemistry of complexes derived from the macrocylic ligands 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and 12-TMC (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane). While [(14-TMC)Cu(I)](+) is unreactive towards dioxygen, the smaller analog [(12-TMC)Cu(I)(CH3CN)](+) reacts with O2 to give a side-on bound peroxo-dicopper(II) species ((S)P), confirmed by spectroscopic and computational methods. Intriguingly, 12-TMC as a N4 donor ligand generates (S)P species, thus in contrast with the previous observation that such species are generated by N2 and N3 ligands. In addition, the reactivity of this macrocyclic side-on peroxo-dicopper(II) differs from typical (S)P species, because it reacts only with acid to release H2O2, in contrast with the classic reactivity of Cu2O2 cores. Kinetics and computations are consistent with a protonation mechanism whereby the TMC acts as a hemilabile ligand and shuttles H(+) to an isomerized peroxo core.


Assuntos
Cobre/química , Compostos Macrocíclicos/química , Compostos Organometálicos/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares
18.
Acc Chem Res ; 48(8): 2462-74, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26244814

RESUMO

Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper or iron ions or both, those reacting with dioxygen (O2) or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2(-))) or both. As inspiration for this work, we turn to mitochondrial cytochrome c oxidase, which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis, and characterization of new O2 adducts whose further study will add insights into O2 reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO's function, which is intimately tied to cellular O2 balance. We had first discovered that reduced heme/Cu compounds react with O2 giving µ-oxo heme-Fe(III)-O-Cu(II)(L) products; their properties are discussed. The O-atom is derived from dioxygen, and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a "naked" synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active sites. The other sector of research is focused on heme/Cu assemblies mediating the redox interplay between nitrite and NO(g). In the nitrite reductase chemistry, the cupric center serves as a Lewis acid, while the heme is the redox active center providing the electron. The orientation of nitrite in approaching the ferrous heme center and N-atom binding are important. Also, detailed spectroscopic and kinetic studies of the NO(g) oxidase chemistry, in excellent agreement with theoretical calculations, reveal the intermediates and key mechanistic steps. Thus, we suggest that both chemical and biochemical heme/Cu-mediated nitrite reductase and NO(g) oxidase chemistry require N-atom binding to a ferrous heme along with cupric ion O-atom coordination, proceeding via a three-membered O-Fe-N chelate ring transition state. These important mechanistic features of heme/Cu systems interconverting NO(g) and nitrite are discussed for the first time.


Assuntos
Complexos de Coordenação/química , Cobre/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/química , Óxidos de Nitrogênio/química , Oxigênio/química , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cinética , Mitocôndrias/metabolismo , Conformação Molecular , Óxidos de Nitrogênio/metabolismo , Oxigênio/metabolismo , Teoria Quântica , Termodinâmica
19.
Acc Chem Res ; 48(8): 2397-406, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26207342

RESUMO

Dioxygen is widely used in nature as oxidant. Nature itself has served as inspiration to use O2 in chemical synthesis. However, the use of dioxygen as an oxidant is not straightforward. Its triplet ground-state electronic structure makes it unreactive toward most organic substrates. In natural systems, metalloenzymes activate O2 by reducing it to more reactive peroxide (O2(2-)) or superoxide (O2(-)) forms. Over the years, the development of model systems containing transition metals has become a convenient tool for unravelling O2-activation mechanistic aspects and reproducing the oxidative activity of enzymes. Several copper-based systems have been developed within this area. Tyrosinase is a copper-based O2-activating enzyme, whose structure and reactivity have been widely studied, and that serves as a paradigm for O2 activation at a dimetal site. It contains a dicopper center in its active site, and it catalyzes the regioselective ortho-hydroxylation of phenols to catechols and further oxidation to quinones. This represents an important step in melanin biosynthesis and it is mediated by a dicopper(II) side-on peroxo intermediate species. In the present accounts, our research in the field of copper models for oxygen activation is collected. We have developed m-xylyl linked dicopper systems that mimick structural and reactivity aspects of tyrosinase. Synergistic cooperation of the two copper(I) centers results in O2 binding and formation of bis(µ-oxo)dicopper(III) cores. These in turn bind and ortho-hydroxylate phenolates via an electrophilic attack of the oxo ligand over the arene. Interestingly the bis(µ-oxo)dicopper(III) cores can also engage in ortho-hydroxylation-defluorination of deprotonated 2-fluorophenols, substrates that are well-known enzyme inhibitors. Analysis of Cu2O2 species with different binding modes show that only the bis(µ-oxo)dicopper(III) cores can mediate the reaction. Finally, the use of unsymmetric systems for oxygen activation is a field that still remains rather unexplored. We envision that the unsymmetry might infere interesting new reactivities. We contributed to this topic with the development of an unsymmetric ligand (m-XYL(N3N4)), whose dicuprous complex reacts with O2 and forms a trans-peroxo dicopper(II) species that showed a markedly different reactivity compared to a symmetric trans-peroxo dicopper(II) analog. Nucleophilic reactivity is observed for the unsymmetric trans-peroxo dicopper(II) species against electrophilies such as H(+), CO2 and aldehydes, and neither oxygen atom transfer nor hydrogen abstraction is observed when reacting with oxygen atom acceptors (triphenyl phosphine, sulfides) and substrates with weak C-H bonds. Instead, electrophilic monooxygenase-like ortho-hydroxylation reactivity is described for these unsymmetric species upon reaction with phenolates. Finally, by using a second dinucleating unsymmetric ligand (L(N3N4)), we have described copper(I) containing heterodimetallic systems and explored their O2 binding properties. Site specific metalation led to the generation of dimeric heterometallic M'CuO2CuM' species from intermolecular O2 binding at copper sites.

20.
J Am Chem Soc ; 137(3): 1032-5, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25594533

RESUMO

Here we describe a new approach for the generation of heme-peroxo-Cu compounds, using a "naked" complex synthon, [(F8)Fe(III)-(O2(2-))-Cu(II)(MeTHF)3](+) (MeTHF = 2-methyltetrahydrofuran; F8 = tetrakis(2,6-difluorophenyl)porphyrinate). Addition of varying ligands (L) for Cu allows the generation and spectroscopic characterization of a family of high- and low-spin Fe(III)-(O2(2-))-Cu(II)(L) complexes. These possess markedly varying Cu(II) coordination geometries, leading to tunable Fe-O, O-O, and Cu-O bond strengths. DFT calculations accompanied by vibrational data correlations give detailed structural insights.


Assuntos
Complexos de Coordenação/química , Cobre/química , Compostos Ferrosos/química , Heme/química , Oxigênio/química , Estrutura Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA