Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(23): 5135-5150.e28, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37865090

RESUMO

Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Biofilmes , Pulmão/microbiologia , Pulmão/patologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Tuberculose/patologia , Virulência , Fenômenos Biomecânicos
2.
Pharmaceutics ; 15(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678885

RESUMO

Pulmonary surfactant (PS) has been proposed as an efficient drug delivery vehicle for inhaled therapies. Its ability to adsorb and spread interfacially and transport different drugs associated with it has been studied mainly by different surface balance designs, typically interconnecting various compartments by interfacial paper bridges, mimicking in vitro the respiratory air-liquid interface. It has been demonstrated that only a monomolecular surface layer of PS/drug is able to cross this bridge. However, surfactant films are typically organized as multi-layered structures associated with the interface. The aim of this work was to explore the contribution of surface-associated structures to the spreading of PS and the transport of drugs. We have designed a novel vehiculization balance in which donor and recipient compartments are connected by a whole three-dimensional layer of liquid and not only by an interfacial bridge. By combining different surfactant formulations and liposomes with a fluorescent lipid dye and a model hydrophobic drug, budesonide (BUD), we observed that the use of the bridge significantly reduced the transfer of lipids and drug through the air-liquid interface in comparison to what can be spread through a fully open interfacial liquid layer. We conclude that three-dimensional structures connected to the surfactant interfacial film can provide an important additional contribution to interfacial delivery, as they are able to transport significant amounts of lipids and drugs during surfactant spreading.

3.
Eur J Pharm Biopharm ; 180: 33-47, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36154903

RESUMO

This work evaluates interaction of pulmonary surfactant (PS) and antimicrobial peptides (AMPs) in order to investigate (i) if PS can be used to transport AMPs, and (ii) to what extent PS interferes with AMP function and vice versa. This, in turn, is motivated by a need to find new strategies to treat bacterial infections in the airways. Low respiratory tract infections (LRTIs) are a leading cause of illness and death worldwide that, together with the problem of multidrug-resistant (MDR) bacteria, bring to light the necessity of developing effective therapies that ensure high bioavailability of the drug at the site of infection and display a potent antimicrobial effect. Here, we propose the combination of AMPs with PS to improve their delivery, exemplified for the hydrophobically end-tagged AMP, GRR10W4 (GRRPRPRPRPWWWW-NH2), with previously demonstrated potent antimicrobial activity against a broad spectrum of bacteria under various conditions. Experiments using model systems emulating the respiratory interface and an operating alveolus, based on surface balances and bubble surfactometry, served to demonstrate that a fluorescently labelled version of GRR10W4 (GRR10W4-F), was able to interact and insert into PS membranes without affecting its biophysical function. Therefore, vehiculization of the peptide along air-liquid interfaces was enabled, even for interfaces previously occupied by surfactants layers. Furthermore, breathing-like compression-expansion dynamics promoted the interfacial release of GRR10W4-F after its delivery, which could further allow the peptide to perform its antimicrobial function. PS/GRR10W4-F formulations displayed greater antimicrobial effects and reduced toxicity on cultured airway epithelial cells compared to that of the peptide alone. Taken together, these results open the door to the development of novel delivery strategies for AMPs in order to increase the bioavailability of these molecules at the infection site via inhaled therapies.


Assuntos
Anti-Infecciosos , Surfactantes Pulmonares , Surfactantes Pulmonares/química , Triptofano , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Monofosfato de Adenosina , Testes de Sensibilidade Microbiana
4.
J Control Release ; 329: 205-222, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33245954

RESUMO

This work explores the potential for strategizing pulmonary surfactant (PS) for drug delivery over the respiratory air-liquid interface: the interfacial delivery. The efficacy of PS- and interface-assisted drug vehiculization was determined both in vitro and in vivo using a native purified porcine PS combined with the hydrophobic anti-inflammatory drug Tacrolimus (TAC), a calcineurin inhibitor. In vitro assays were conducted in a novel double surface balance setup designed to emulate compression-expansion dynamics applied to interfacially connected drug donor and recipient compartments. In this setup, PS transported TAC efficiently over air-liquid interfaces, with compression/expansion breathing-like dynamics enhancing rapid interface-assisted diffusion and drug release. The efficacy of PS-assisted TAC vehiculization was also evaluated in vivo in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). In anesthetized mice, TAC combined with PS was intra-nasally (i.n) instilled prior administering i.n. LPS. PS/TAC pre-treatment caused greater TAC internalization into a higher number of lung cells obtained from bronchoalveolar lavages (BAL) than TAC pre-treatment alone. Additionally, the PS/TAC combination but not TAC or PS alone attenuated the LPS-induced pro-inflammatory effects reducing cells and proteins in BAL fluid. These findings indicated that PS-mediated increase in TAC uptake blunted the pro-injurious effects of LPS, suggesting a synergistic anti-inflammatory effect of PS/drug formulations. These in vitro and in vivo results establish the potential utility of PS to open novel effective delivery strategies for inhaled drugs.


Assuntos
Preparações Farmacêuticas , Surfactantes Pulmonares , Animais , Sistemas de Liberação de Medicamentos , Camundongos , Tensoativos , Suínos , Tacrolimo
5.
Biochim Biophys Acta Biomembr ; 1862(6): 183258, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142819

RESUMO

Ole e 7 allergen from Olea europaea pollen possesses a major clinical relevance because it produces severe symptoms, such as anaphylaxis, in allergic patients exposed to high olive pollen counts. Ole e 7 is a non-specific lipid transfer protein (nsLTP) characterized by the presence of a tunnel-like hydrophobic cavity, which may be suitable for hosting and, thus, transporting lipids -as it has been described for other nsLTPs-. The identification of the primary amino acid sequence of Ole e 7, and its production as a recombinant allergen, allowed characterizing its lipid-binding properties and its effect at air-liquid interfaces. Fluorescence and interferometry experiments were performed using different phospholipid molecular species and free fatty acids to analyse the lipid-binding ability and specificity of the allergen. Molecular modelling of the allergen was used to determine the potential regions involved in lipid interaction. Changes in Ole e 7 structure after lipid interaction were analysed by circular dichroism. Changes in the IgE binding upon ligand interaction were determined by ELISA. Wilhelmy balance measurements and fluorescence surfactant adsorption tests were performed to analyse the surface activity of the allergen. Using these different approaches, we have demonstrated the ability of Ole e 7 to interact and bind to a wide range of lipids, especially negatively charged phospholipids and oleic acid. We have also identified the protein structural regions and the residues potentially involved in that interaction, suggesting how lipid-protein interactions could define the behaviour of the allergen once inhaled at the airways.


Assuntos
Imunoglobulina E/metabolismo , Metabolismo dos Lipídeos/imunologia , Olea/imunologia , Proteínas de Plantas/metabolismo , Modelos Moleculares , Estrutura Molecular , Olea/química , Olea/metabolismo , Ácido Oleico/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Plantas/química , Ligação Proteica
6.
Front Bioeng Biotechnol ; 8: 613276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542913

RESUMO

This work is focused on the potential use of pulmonary surfactant to deliver full-length recombinant human surfactant protein SP-D (rhSP-D) using the respiratory air-liquid interface as a shuttle. Surfactant protein D (SP-D) is a collectin protein present in the pulmonary surfactant (PS) system, involved in innate immune defense and surfactant homeostasis. It has been recently suggested as a potential therapeutic to alleviate inflammatory responses and lung diseases in preterm infants suffering from respiratory distress syndrome (RDS) or bronchopulmonary dysplasia (BPD). However, none of the current clinical surfactants used for surfactant replacement therapy (SRT) to treat RDS contain SP-D. The interaction of SP-D with surfactant components, the potential of PS as a respiratory drug delivery system and the possibility to produce recombinant versions of human SP-D, brings the possibility of delivering clinical surfactants supplemented with SP-D. Here, we used an in vitro setup that somehow emulates the respiratory air-liquid interface to explore this novel approach. It consists in two different compartments connected with a hydrated paper bridge forming a continuous interface. We firstly analyzed the adsorption and spreading of rhSP-D alone from one compartment to another over the air-liquid interface, observing low interfacial activity. Then, we studied the interfacial spreading of the protein co-administered with PS, both at different time periods or as a mixed formulation, and which oligomeric forms of rhSP-D better traveled associated with PS. The results presented here demonstrated that PS may transport rhSP-D long distances over air-liquid interfaces, either as a mixed formulation or separately in a close window time, opening the doors to empower the current clinical surfactants and SRT.

7.
Eur J Pharm Biopharm ; 144: 230-243, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31560956

RESUMO

The rapid development of nanotechnology is opening a huge world of promising possibilities in healthcare, but this is also increasing the necessity to study the potential risk of nanoparticles on public health and the environment. Since the main route for airborne particles to enter into our organism is through the lungs, it has become essential to prove that the nanoparticles generated by human activities do not compromise the respiratory function. This review explains the key role of pulmonary surfactant to sustain the normal function of breathing, as well as the stability and immunity of lungs. Particular emphasis is made on the importance of analysing the features of nanoparticles, defining their interactions with surfactant and unravelling the mutual effects. The implication of the nanoparticle-surfactant interaction on the function and fate of both structures is described, as well as the main in vitro methodologies used to evaluate this interaction. Finally, the incorporation of pulmonary surfactant in appropriate in vitro models is used in order to obtain an extensive understanding of how nanoparticles may act in the context of the lung. The main goal of this review is to offer a general view on inhaled nanoparticles and their effects on the structure and function of lungs derived from their interaction with the pulmonary surfactant system.


Assuntos
Pulmão/metabolismo , Nanopartículas/metabolismo , Surfactantes Pulmonares/metabolismo , Administração por Inalação , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas/metabolismo , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA