Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 311(3): e232677, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38916504

RESUMO

Background CT-derived bronchial parameters have been linked to chronic obstructive pulmonary disease and asthma severity, but little is known about these parameters in healthy individuals. Purpose To investigate the distribution of bronchial parameters at low-dose CT in individuals with healthy lungs from a Dutch general population. Materials and Methods In this prospective study, low-dose chest CT performed between May 2017 and October 2022 were obtained from participants who had completed the second-round assessment of the prospective, longitudinal Imaging in Lifelines study. Participants were aged at least 45 years, and those with abnormal spirometry, self-reported respiratory disease, or signs of lung disease at CT were excluded. Airway lumens and walls were segmented automatically. The square root of the bronchial wall area of a hypothetical airway with an internal perimeter of 10 mm (Pi10), luminal area (LA), wall thickness (WT), and wall area percentage were calculated. Associations between sex, age, height, weight, smoking status, and bronchial parameters were assessed using univariable and multivariable analyses. Results The study sample was composed of 8869 participants with healthy lungs (mean age, 60.9 years ± 10.4 [SD]; 4841 [54.6%] female participants), including 3672 (41.4%) never-smokers and 1197 (13.5%) individuals who currently smoke. Bronchial parameters for male participants were higher than those for female participants (Pi10, slope [ß] range = 3.49-3.66 mm; LA, ß range = 25.40-29.76 mm2; WT, ß range = 0.98-1.03 mm; all P < .001). Increasing age correlated with higher Pi10, LA, and WT (r2 range = 0.06-0.09, 0.02-0.01, and 0.02-0.07, respectively; all P < .001). Never-smoking individuals had the lowest Pi10 followed by formerly smoking and currently smoking individuals (3.62 mm ± 0.13, 3.68 mm ± 0.14, and 3.70 mm ± 0.14, respectively; all P < .001). In multivariable regression models, age, sex, height, weight, and smoking history explained up to 46% of the variation in bronchial parameters. Conclusion In healthy individuals, bronchial parameters differed by sex, height, weight, and smoking history; male sex and increasing age were associated with wider lumens and thicker walls. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Emrich and Varga-Szemes in this issue.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Estudos Prospectivos , Pulmão/diagnóstico por imagem , Brônquios/diagnóstico por imagem , Doses de Radiação , Idoso , Países Baixos
2.
Eur Radiol ; 33(10): 6718-6725, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37071168

RESUMO

OBJECTIVES: Computed tomography (CT)-based bronchial parameters correlate with disease status. Segmentation and measurement of the bronchial lumen and walls usually require significant manpower. We evaluate the reproducibility of a deep learning and optimal-surface graph-cut method to automatically segment the airway lumen and wall, and calculate bronchial parameters. METHODS: A deep-learning airway segmentation model was newly trained on 24 Imaging in Lifelines (ImaLife) low-dose chest CT scans. This model was combined with an optimal-surface graph-cut for airway wall segmentation. These tools were used to calculate bronchial parameters in CT scans of 188 ImaLife participants with two scans an average of 3 months apart. Bronchial parameters were compared for reproducibility assessment, assuming no change between scans. RESULTS: Of 376 CT scans, 374 (99%) were successfully measured. Segmented airway trees contained a mean of 10 generations and 250 branches. The coefficient of determination (R2) for the luminal area (LA) ranged from 0.93 at the trachea to 0.68 at the 6th generation, decreasing to 0.51 at the 8th generation. Corresponding values for Wall Area Percentage (WAP) were 0.86, 0.67, and 0.42, respectively. Bland-Altman analysis of LA and WAP per generation demonstrated mean differences close to 0; limits of agreement (LoA) were narrow for WAP and Pi10 (± 3.7% of mean) and wider for LA (± 16.4-22.8% for 2-6th generations). From the 7th generation onwards, there was a sharp decrease in reproducibility and a widening LoA. CONCLUSION: The outlined approach for automatic bronchial parameter measurement on low-dose chest CT scans is a reliable way to assess the airway tree down to the 6th generation. STATEMENT ON CLINICAL RELEVANCE: This reliable and fully automatic pipeline for bronchial parameter measurement on low-dose CT scans has potential applications in screening for early disease and clinical tasks such as virtual bronchoscopy or surgical planning, while also enabling the exploration of bronchial parameters in large datasets. KEY POINTS: • Deep learning combined with optimal-surface graph-cut provides accurate airway lumen and wall segmentations on low-dose CT scans. • Analysis of repeat scans showed that the automated tools had moderate-to-good reproducibility of bronchial measurements down to the 6th generation airway. • Automated measurement of bronchial parameters enables the assessment of large datasets with less man-hours.


Assuntos
Inteligência Artificial , Brônquios , Humanos , Reprodutibilidade dos Testes , Brônquios/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Tórax
3.
Front Pharmacol ; 14: 1147348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113757

RESUMO

Background: Newly developed quantitative chest computed tomography (CT) outcomes designed specifically to assess structural abnormalities related to cystic fibrosis (CF) lung disease are now available. CFTR modulators potentially can reduce some structural lung abnormalities. We aimed to investigate the effect of CFTR modulators on structural lung disease progression using different quantitative CT analysis methods specific for people with CF (PwCF). Methods: PwCF with a gating mutation (Ivacaftor) or two Phe508del alleles (lumacaftor-ivacaftor) provided clinical data and underwent chest CT scans. Chest CTs were performed before and after initiation of CFTR modulator treatment. Structural lung abnormalities on CT were assessed using the Perth Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF), airway-artery dimensions (AA), and CF-CT methods. Lung disease progression (0-3 years) in exposed and matched unexposed subjects was compared using analysis of covariance. To investigate the effect of treatment in early lung disease, subgroup analyses were performed on data of children and adolescents aged <18 years. Results: We included 16 modulator exposed PwCF and 25 unexposed PwCF. Median (range) age at the baseline visit was 12.55 (4.25-36.49) years and 8.34 (3.47-38.29) years, respectively. The change in PRAGMA-CF %Airway disease (-2.88 (-4.46, -1.30), p = 0.001) and %Bronchiectasis extent (-2.07 (-3.13, -1.02), p < 0.001) improved in exposed PwCF compared to unexposed. Subgroup analysis of paediatric data showed that only PRAGMA-CF %Bronchiectasis (-0.88 (-1.70, -0.07), p = 0.035) improved in exposed PwCF compared to unexposed. Conclusion: In this preliminary real-life retrospective study CFTR modulators improve several quantitative CT outcomes. A follow-up study with a large cohort and standardization of CT scanning is needed to confirm our findings.

4.
Eur Radiol Exp ; 5(1): 54, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34841480

RESUMO

Airways segmentation is important for research about pulmonary disease but require a large amount of time by trained specialists. We used an openly available software to improve airways segmentations obtained from an artificial intelligence (AI) tool and retrained the tool to get a better performance. Fifteen initial airway segmentations from low-dose chest computed tomography scans were obtained with a 3D-Unet AI tool previously trained on Danish Lung Cancer Screening Trial and Erasmus-MC Sophia datasets. Segmentations were manually corrected in 3D Slicer. The corrected airway segmentations were used to retrain the 3D-Unet. Airway measurements were automatically obtained and included count, airway length and luminal diameter per generation from the segmentations. Correcting segmentations required 2-4 h per scan. Manually corrected segmentations had more branches (p < 0.001), longer airways (p < 0.001) and smaller luminal diameters (p = 0.004) than initial segmentations. Segmentations from retrained 3D-Unets trended towards more branches and longer airways compared to the initial segmentations. The largest changes were seen in airways from 6th generation onwards. Manual correction results in significantly improved segmentations and is potentially a useful and time-efficient method to improve the AI tool performance on a specific hospital or research dataset.


Assuntos
Inteligência Artificial , Neoplasias Pulmonares , Detecção Precoce de Câncer , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Software , Tomografia Computadorizada por Raios X
5.
Sci Rep ; 11(1): 16001, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362949

RESUMO

This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT'09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT'09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT'09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA