Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS Genet ; 18(11): e1010496, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36346812

RESUMO

Bone and muscle are coupled through developmental, mechanical, paracrine, and autocrine signals. Genetic variants at the CPED1-WNT16 locus are dually associated with bone- and muscle-related traits. While Wnt16 is necessary for bone mass and strength, this fails to explain pleiotropy at this locus. Here, we show wnt16 is required for spine and muscle morphogenesis in zebrafish. In embryos, wnt16 is expressed in dermomyotome and developing notochord, and contributes to larval myotome morphology and notochord elongation. Later, wnt16 is expressed at the ventral midline of the notochord sheath, and contributes to spine mineralization and osteoblast recruitment. Morphological changes in wnt16 mutant larvae are mirrored in adults, indicating that wnt16 impacts bone and muscle morphology throughout the lifespan. Finally, we show that wnt16 is a gene of major effect on lean mass at the CPED1-WNT16 locus. Our findings indicate that Wnt16 is secreted in structures adjacent to developing bone (notochord) and muscle (dermomyotome) where it affects the morphogenesis of each tissue, thereby rendering wnt16 expression into dual effects on bone and muscle morphology. This work expands our understanding of wnt16 in musculoskeletal development and supports the potential for variants to act through WNT16 to influence bone and muscle via parallel morphogenetic processes.


Assuntos
Notocorda , Peixe-Zebra , Animais , Peixe-Zebra/genética , Coluna Vertebral , Músculos , Morfogênese/genética , Larva , Proteínas de Peixe-Zebra/genética , Proteínas Wnt/genética
2.
JBMR Plus ; 3(5): e10087, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31131340

RESUMO

Nearly all exogenous loading models of bone adaptation apply dynamic loading superimposed upon a time invariant static preload (SPL) in order to ensure stable, reproducible loading of bone. Given that SPL may alter aspects of bone mechanotransduction (eg, interstitial fluid flow), we hypothesized that SPL inhibits bone formation induced by dynamic loading. As a first test of this hypothesis, we utilized a newly developed device that enables stable dynamic loading of the murine tibia with SPLs ≥ -0.01 N. We subjected the right tibias of BALB/c mice (4-month-old females) to dynamic loading (-3.8 N, 1 Hz, 50 cycles/day, 10 s rest) superimposed upon one of three SPLs: -1.5 N, -0.5 N, or -0.03 N. Mice underwent exogenous loading 3 days/week for 3 weeks. Metaphyseal trabecular bone adaptation (µCT) and midshaft cortical bone formation (dynamic histomorphometry) were assessed following euthanasia (day 22). Ipsilateral tibias of mice loaded with a -1.5-N SPL demonstrated significantly less trabecular bone volume/total volume (BV/TV) than contralateral tibias (-12.9%). In contrast, the same dynamic loading superimposed on a -0.03-N SPL significantly elevated BV/TV versus contralateral tibias (12.3%) and versus the ipsilateral tibias of the other SPL groups (-0.5 N: 46.3%, -1.5 N: 37.2%). At the midshaft, the periosteal bone formation rate (p.BFR) induced when dynamic loading was superimposed on -1.5-N and -0.5-N SPLs was significantly amplified in the -0.03-N SPL group (>200%). These data demonstrate that bone anabolism induced by dynamic loading is markedly inhibited by SPL magnitudes commonly implemented in the literature (ie, -0.5 N, -1.5 N). The inhibitory impact of SPL has not been recognized in bone adaptation models and, as such, SPLs have been neither universally reported nor standardized. Our study therefore identifies a previously unrecognized, potent inhibitor of mechanoresponsiveness that has potentially confounded studies of bone adaptation and translation of insights from our field. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

3.
J Musculoskelet Neuronal Interact ; 19(1): 79-93, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30839306

RESUMO

OBJECTIVES: To clarify the effects of neuromuscular dysfunction on hindlimb loading, muscle atrophy, and bone homeostasis. METHODS: We quantified changes to hindlimb loading, muscle atrophy, and bone morphology following either Botulinum toxin A (BTxA) induced muscle paralysis or peripheral nerve injury (PNI) in mice; two in vivo models that we anticipated would differently alter gait and mechanical loading patterns due to their distinct effects on neuromuscular signaling. To confirm the expected behavioral effects of PNI, we assessed mechanical allodynia of the ipsilateral hindlimb using von Frey testing and activity (distance traveled and speed) was monitored in both groups using open field testing. Peak vertical ground reaction forces (GRF) and ankle and knee kinematics during normal locomotion were quantified and used to estimate peak mid-diaphyseal normal strains. Muscle atrophy and trabecular and cortical bone morphology were assessed via high-resolution microCT imaging. RESULTS: BTxA-induced calf paralysis caused severe muscle atrophy and altered gait kinetics and kinematics and reduced gait-induced normal strains. PNI increased mechanical allodynia but did not alter gait, nor did it cause muscle atrophy. We observed that muscle paralysis and PNI both led to severe trabecular bone loss but only BTxA-induced paralysis increased cortical bone resorption. CONCLUSIONS: While mechanical stimuli clearly have essential functions in bone development and adaptation, these data emphasize that neuromuscular signaling, independent of load-induced mechanical strains, may modulate trabecular bone homeostasis in normal and disease states.


Assuntos
Osso e Ossos/fisiologia , Doenças Neuromusculares/fisiopatologia , Paralisia/fisiopatologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Toxinas Botulínicas Tipo A/farmacologia , Transtornos Neurológicos da Marcha/etiologia , Homeostase/fisiologia , Camundongos , Atrofia Muscular/fisiopatologia , Fármacos Neuromusculares/farmacologia , Paralisia/induzido quimicamente
4.
PLoS One ; 13(11): e0207354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427927

RESUMO

At sufficient dose, intramuscular injection of Botulinum toxin A causes muscle wasting that is physiologically consistent with surgical denervation and other types of neuromuscular dysfunction. The aim of this study was to clarify early molecular and micro-RNA alterations in skeletal muscle following Botulinum toxin A-induced muscle paralysis. Quadriceps were analyzed for changes in expression of micro- and messenger RNA and protein levels after a single injection of 0.4, 2 or 4U Botulinum toxin A (/100g body weight). After injection with 2.0U Botulinum toxin A, quadriceps exhibited significant reduction in muscle weight and increased levels of ubiquitin ligase proteins at 7, 14 and 28 days. Muscle miR-1 and miR-133a/b levels were decreased at these time points, whereas a dose-responsive increase in miR-206 expression at day 14 was observed. Expression of the miR-133a/b target genes RhoA, Tgfb1 and Ctfg, and the miR-1/206 target genes Igf-1 and Hdac4, were upregulated at 28 days after Botulinum toxin A injection. Increased levels of Hdac4 protein were observed after injection, consistent with anticipated expression changes in direct and indirect Hdac4 target genes, such as Myog. Our results suggest Botulinum toxin A-induced denervation of muscle shares molecular characteristics with surgical denervation and other types of neuromuscular dysfunction, and implicates miR-133/Tgf-ß1/Ctfg and miR-1/Hdac4/Myog signaling during the resultant muscle atrophy.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Histona Desacetilases/genética , MicroRNAs/genética , Músculo Esquelético/efeitos dos fármacos , Fármacos Neuromusculares/farmacologia , Paralisia/induzido quimicamente , Paralisia/genética , Animais , Toxinas Botulínicas Tipo A/administração & dosagem , Feminino , Histona Desacetilases/análise , Injeções Intramusculares , Camundongos Endogâmicos C57BL , MicroRNAs/análise , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Fármacos Neuromusculares/administração & dosagem , Paralisia/fisiopatologia , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
5.
Am J Physiol Cell Physiol ; 313(5): C533-C540, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855162

RESUMO

Transient muscle paralysis engendered by a single injection of botulinum toxin A (BTxA) rapidly induces profound focal bone resorption within the medullary cavity of adjacent bones. While initially conceived as a model of mechanical disuse, osteoclastic resorption in this model is disproportionately severe compared with the modest gait defect that is created. Preliminary studies of bone marrow following muscle paralysis suggested acute upregulation of inflammatory cytokines, including TNF-α and IL-1. We therefore hypothesized that BTxA-induced muscle paralysis would rapidly alter the inflammatory microenvironment and the osteoclastic potential of bone marrow. We tested this hypothesis by defining the time course of inflammatory cell infiltration, osteoinflammatory cytokine expression, and alteration in osteoclastogenic potential in the tibia bone marrow following transient muscle paralysis of the calf muscles. Our findings identified inflammatory cell infiltration within 24 h of muscle paralysis. By 72 h, osteoclast fusion and pro-osteoclastic inflammatory gene expression were upregulated in tibia bone marrow. These alterations coincided with bone marrow becoming permissive to the formation of osteoclasts of greater size and greater nuclei numbers. Taken together, our data are consistent with the thesis that transient calf muscle paralysis induces acute inflammation within the marrow of the adjacent tibia and that these alterations are temporally consistent with a role in mediating muscle paralysis-induced bone resorption.


Assuntos
Reabsorção Óssea/fisiopatologia , Inflamação/etiologia , Músculo Esquelético/efeitos dos fármacos , Osteoclastos/patologia , Paralisia/fisiopatologia , Animais , Medula Óssea/patologia , Reabsorção Óssea/etiologia , Toxinas Botulínicas Tipo A/toxicidade , Feminino , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuromusculares/toxicidade , Paralisia/induzido quimicamente , Paralisia/imunologia , Linfócitos T/imunologia
6.
J Cell Biochem ; 118(8): 2141-2150, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27996212

RESUMO

The importance of Wnt pathway signaling in development of bone has been well established. Here we investigated the role of a known Wnt target, ENC1 (ectodermal-neural cortex 1; NRP/B), in osteoblast differentiation. Enc1 expression was detected in mouse osteoblasts, chondrocytes, and osteocytes by in situ hybridization, and osteoblastic expression was verified in differentiating primary cultures and MC3T3-E1 pre-osteoblast cells, with 57 kDa and 67 kDa ENC1 protein isoforms detected throughout differentiation. Induced knockdown of both ENC1 isoforms reduced alkaline phosphatase staining and virtually abolished MC3T3-E1 mineralization. At culture confluence, Alpl (alkaline phosphatase liver/bone/kidney) expression was markedly reduced compared with control cells, and there was significant and coordinated alteration of other genes involved in cellular phosphate biochemistry. In contrast, with 67 kDa-selective knockdown mineralized nodule formation was enhanced and there was a two-fold increase in Alpl expression at confluence. There was enhanced expression of Wnt/ß-catenin target genes with knockdown of both isoforms at this time-point and a five-fold increase in Frzb (Frizzled related protein) with 67 kDa-selective knockdown at mineralization, indicating possible ENC1 interactions with Wnt signaling in osteoblasts. These results are the first to demonstrate a role for ENC1 in the control of osteoblast differentiation. Additionally, the contrasting mineralization phenotypes and transcriptional patterns seen with coordinate knockdown of both ENC1 isoforms vs selective knockdown of 67 kDa ENC1 suggest opposing roles for the isoforms in regulation of osteoblastic differentiation, through effects on Alpl expression and phosphate cellular biochemistry. This study is the first to report differential roles for the ENC1 isoforms in any cell lineage. J. Cell. Biochem. 118: 2141-2150, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Isoformas de Proteínas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/genética , Calcificação Fisiológica/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Immunoblotting , Hibridização In Situ , Camundongos , Proteínas dos Microfilamentos/genética , Neuropeptídeos/genética , Proteínas Nucleares/genética , Osteócitos/metabolismo , Isoformas de Proteínas/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/genética , beta Catenina/metabolismo
7.
Med Sci Sports Exerc ; 47(5): 1095-103, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25207932

RESUMO

PURPOSE: As our society becomes increasingly sedentary, compliance with exercise regimens that require numerous high-energy activities each week become less likely. Alternatively, given an osteogenic exercise intervention that required minimal effort, it is reasonable to presume that participation would be enhanced. Insertion of brief rest intervals between each cycle of mechanical loading holds potential to achieve this result because substantial osteoblast function is activated by many fewer loading repetitions within each loading bout. Here, we examined the complementary hypothesis that the number of bouts per week of rest-inserted loading could be reduced from three bouts per week without loss of osteogenic efficacy. METHODS: We conducted a series of 3-wk in vivo experiments that noninvasively exposed the right tibiae of mice to either cyclic (1 Hz) or rest-inserted loading interventions and quantified osteoblast function via dynamic histomorphometry. RESULTS: Although reducing loading bouts from three bouts per week (i.e., nine total bouts) to one bout per week (i.e., three total bouts) effectively mitigated the osteogenic benefit of cyclic loading, the same reduction did not significantly reduce periosteal bone formation parameters induced by rest-inserted loading. The osteogenic response was robust to the timing of the rest-inserted loading bouts (three bouts in the first week vs one bout per week for 3 wk). However, elimination of any single bout of the three one-bout-per-week bouts mitigated the osteogenic response to rest-inserted loading. Finally, periosteal osteoblast function assessed after the 3-wk intervention was not sensitive to the timing or number of rest-inserted loading bouts. CONCLUSIONS: We conclude that rest-inserted loading holds potential to retain the osteogenic benefits of mechanical loading with significantly reduced frequency of bouts of activity while also enabling greater flexibility in the timing of the activity.


Assuntos
Osteogênese/fisiologia , Condicionamento Físico Animal/métodos , Suporte de Carga/fisiologia , Animais , Feminino , Camundongos Endogâmicos C57BL , Descanso , Estresse Mecânico , Tíbia/fisiologia , Fatores de Tempo
8.
Cell Mol Bioeng ; 7(2): 254-265, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484988

RESUMO

Growing evidence suggests that aging compromises the ability of the skeleton to respond to anabolic mechanical stimuli. Recently, we reported that treating senescent mice with Cyclosporin A (CsA) rescued aging-related deficits in loading-induced bone formation. Given that the actions of CsA are often attributed to inhibition of the calcineurin/NFAT axis, we hypothesized that CsA enhances gene expression in bone cells exposed to fluid flow, by inhibiting nuclear NFATc1 accumulation. When exposed to flow, MC3T3-E1 osteoblastic cells exhibited rapid nuclear accumulation of NFATc1 that was abolished by CsA treatment. Under differentiation conditions, intermittent CsA treatment enhanced gene expression of late osteoblastic differentiation markers and activator protein 1 (AP-1) family members. Superimposing flow upon CsA further enhanced expression of the AP-1 members Fra-1 and c-Jun. To delineate the contribution of NFAT in this response, cells were treated with VIVIT, a specific inhibitor of the calcineurin/NFAT interaction. Treatment with VIVIT blocked flow-induced nuclear NFATc1 accumulation but did not recapitulate the CsA-mediated enhancement of flow-induced AP-1 component gene expression. Taken together, our study is the first to demonstrate that CsA enhances mechanically-induced gene expression of AP-1 components in bone cells, and suggests that this response requires calcineurin-dependent mechanisms that are independent of inhibiting NFATc1 nuclear accumulation.

9.
J Bone Miner Res ; 29(11): 2346-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24806738

RESUMO

Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (eg, development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study, we developed a model of BTx-induced muscle paralysis in adult zebrafish, and we examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Toxinas Botulínicas/toxicidade , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Paralisia/metabolismo , Peixe-Zebra/metabolismo , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Paralisia/induzido quimicamente , Paralisia/patologia
10.
PLoS One ; 9(1): e84868, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404194

RESUMO

Age-related decline in periosteal adaptation negatively impacts the ability to utilize exercise to enhance bone mass and strength in the elderly. We recently observed that in senescent animals subject to cyclically applied loading, supplementation with Cyclosporin A (CsA) substantially enhanced the periosteal bone formation rates to levels observed in young animals. We therefore speculated that if the CsA supplement could enhance bone response to a variety of types of mechanical stimuli, this approach could readily provide the means to expand the range of mild stimuli that are robustly osteogenic at senescence. Here, we specifically hypothesized that a given CsA supplement would enhance bone formation induced in the senescent skeleton by both cyclic (1-Hz) and rest-inserted loading (wherein a 10-s unloaded rest interval is inserted between each load cycle). To examine this hypothesis, the right tibiae of senescent female C57BL/6 mice (22 Mo) were subjected to cyclic or rest-inserted loading supplemented with CsA at 3.0 mg/kg. As previously, we initially found that while the periosteal bone formation rate (p.BFR) induced by cyclic loading was enhanced when supplemented with 3.0 mg/kg CsA (by 140%), the response to rest-inserted loading was not augmented at this CsA dosage. In follow-up experiments, we observed that while a 30-fold lower CsA dosage (0.1 mg/kg) significantly enhanced p.BFR induced by rest-inserted loading (by 102%), it was ineffective as a supplement with cyclic loading. Additional experiments and statistical analysis confirmed that the dose-response relations were significantly different for cyclic versus rest-inserted loading, only because the two stimuli required distinct CsA dosages for efficacy. While not anticipated a priori, clarifying the complexity underlying the observed interaction between CsA dosage and loading type holds potential for insight into how bone response to a broad range of mechanical stimuli may be substantially enhanced in the senescent skeleton.


Assuntos
Osso e Ossos/efeitos dos fármacos , Ciclosporina/administração & dosagem , Osteogênese/efeitos dos fármacos , Fatores Etários , Envelhecimento/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Camundongos
11.
PLoS One ; 8(9): e74205, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040202

RESUMO

Bone has long been established to be a highly mechanosensitive tissue. When subjected to mechanical loading, bone exhibits profoundly different anabolic responses depending on the temporal pattern in which the stimulus is applied. This phenomenon has been termed temporal processing, and involves complex signal amplification mechanisms that are largely unidentified. In this study, our goal was to characterize transcriptomic perturbations arising from the insertion of intermittent rest periods (a temporal variation with profound effects on bone anabolism) in osteoblastic cells subjected to fluid flow, and assess the utility of these perturbations to identify signaling pathways that are differentially activated by this temporal variation. At the level of the genome, we found that the common and differential alterations in gene expression arising from the two flow conditions were distributionally distinct, with the differential alterations characterized by many small changes in a large number of genes. Using bioinformatics analysis, we identified distinct up- and down-regulation transcriptomic signatures associated with the insertion of rest intervals, and found that the up-regulation signature was significantly associated with MAPK signaling. Confirming the involvement of the MAPK pathway, we found that the insertion of rest intervals significantly elevated flow-induced p-ERK1/2 levels by enabling a second spike in activity that was not observed in response to continuous flow. Collectively, these studies are the first to characterize distinct transcriptomic perturbations in bone cells subjected to continuous and intermittent stimulation, and directly demonstrate the utility of systems-based transcriptomic analysis to identify novel acute signaling pathways underlying temporal processing in bone cells.


Assuntos
Osso e Ossos/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Mecanotransdução Celular , Osteoblastos/metabolismo , Transcriptoma , Animais , Osso e Ossos/citologia , Linhagem Celular , Perfilação da Expressão Gênica , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/citologia , Reologia , Estresse Mecânico
12.
J Bone Miner Res ; 24(2): 294-304, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18847327

RESUMO

Important and novel roles for neuropeptide Y (NPY) signaling in the control of bone homeostasis have recently been identified, with deletion of either the Y1 or Y2 receptors resulting in a generalized increase in bone formation. Whereas the Y2 receptor-mediated anabolic response is mediated by a hypothalamic relay, the Y1-mediated response is likely mediated by osteoblastic Y1 receptors. The presence of Y1 receptors on osteoblasts and various other peripheral tissues suggests that, in addition to neuronal input, circulating factors may also interact with the Y1-mediated pathways. The skeletal and adipose tissue (peripheral and marrow) responses to Y1 receptor deficiency were examined after (1) leptin deficiency, (2) gonadectomy, and (3) hypothalamic NPY overexpression. Bone formation was consistently increased in intact Y1(-/-) mice. However, the hypogonadism of gonadectomy or leptin deficiency blocked this anabolism in male Y1(-/-) mice, whereas females remained unchanged. The Y1-mediated bone anabolic pathway thus seems to be dependent on the presence of intact androgen signaling. Y1 deficiency also led to increased body weight and/or adiposity in all experimental models, with the exception of male ob/ob, showing a general adipogenic effect of Y1 deficiency that is not dependent on androgens. Interestingly, marrow adipocytes were regulated differently than general adipose depots in these models. Taken together, this interaction represents a novel mechanism for the integration of endocrine and neural signals initiated in the hypothalamus and provides further insight into the coordination of bone and energy homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Osso e Ossos/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Homeostase , Neuropeptídeo Y/metabolismo , Transdução de Sinais , Adiposidade , Animais , Glicemia/metabolismo , Peso Corporal , Reabsorção Óssea/metabolismo , Feminino , Deleção de Genes , Hormônios Esteroides Gonadais/sangue , Leptina/deficiência , Masculino , Camundongos , Obesidade/metabolismo , Osteogênese , Receptores de Neuropeptídeo Y/deficiência , Magreza/metabolismo , Aumento de Peso
13.
Int J Biochem Cell Biol ; 40(9): 1716-28, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18295529

RESUMO

In mammals there are two ubiquitous, catalytically indistinguishable isoforms of inosine monophosphate dehydrogenase and mutations in the type I isoform, but not type II, cause retina-specific disorders. We have characterised the spatio-temporal expression of these proteins during development of the rat retina and performed functional investigations of the recently described retinal type I variants. Inosine monophosphate dehydrogenase was present in all immature cells throughout the retina during embryonic and neonatal development. Following eye opening and cell differentiation its distribution was restricted to the photoreceptors and bipolar cells, becoming prominent in Müller cells with aging. Type II was present in early, developing retinae whilst type I was undetectable. An isoform switch occurred around P10, after which the type I variants, type Ialpha and type Igamma, were the major forms. Functional investigations indicate type Igamma has greater catalytic activity compared with other variants and isoforms. Finally, all forms of type I show an increased propensity to form intracellular macrostructures compared to type II and these structures appear to be regulated in response to changing intracellular GTP levels. Collectively these data demonstrate that (i) type I does not play a role in early retinal development, (ii) type Igamma has greater activity and (iii) there are differences between type I and type II isoforms. These observations are consistent with the aetiology of retinitis pigmentosa and raise the possibility that programmed expression of specific inosine monophosphate dehydrogenase proteins may have arisen to meet the requirements of the cellular environment.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Mutação , Retina/enzimologia , Retina/crescimento & desenvolvimento , Animais , Especificidade de Anticorpos , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Ativação Enzimática , Humanos , Espaço Intracelular/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Espectrometria de Massas , Ratos , Reprodutibilidade dos Testes
14.
Bone ; 41(1): 87-96, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17513186

RESUMO

The Wnt pathway regulates cell proliferation and differentiation in development and disease, with a number of recent reports linking Wnt to control of osteoblast differentiation and bone mass. There is also accumulating evidence for interaction between the Wnt and nuclear receptor (NR)-mediated control pathways in non-osseous tissues. Calcitriol (1,25D(3)), which is the active hormonal ligand for the vitamin D receptor (VDR), a member of the NR superfamily, induces osteoblastic cell cycle arrest and expression of genes involved in matrix mineralization in vitro, with over-expression of VDR in mature osteoblasts increasing bone mass in mice. To determine whether the vitamin D and Wnt control pathways interact in osteoblastic regulation, we investigated the treatment effects of 1,25D(3) and/or lithium chloride (LiCl), which mimics canonical Wnt pathway activation, on osteoblast proliferation and differentiation. Treatments were initiated at various stages in differentiating cultures of the MC3T3-E1 osteoprogenitor cell line. Treatment of subconfluent cultures (day 1) with either agent transiently increased cell proliferation but decreased viable cell number, with additive inhibition after combined treatment. Interestingly, although early response patterns of alkaline phosphatase activity to 1,25D(3) and LiCl were opposite, mineralized nodule formation was virtually abolished by either treatment initiated at day 1 and remained very low after initiating treatments at matrix-formation stage (day 6). By contrast, mineralized nodule formation was substantial but reduced if 1,25D(3) and/or LiCl treatment was initiated at mineralization onset (day 13). Osteocalcin production was reduced by all treatments at all time points. Thus, vitamin D and/or canonical Wnt pathway activation markedly reduced mineralization, with additive inhibitory effects on viable cell number. The strength of the response was dependent on the stage of differentiation at treatment initiation. Importantly, the inhibitory effect of LiCl in this committed osteoblastic cell line contrasts with the stimulatory effects of genetic Wnt pathway activation in human and mouse bone tissue. This is consistent with the anabolic Wnt response occurring at a stage prior to the mature osteoprogenitor in the intact skeleton and suggests that prolonged or repeated activation of the canonical Wnt response in committed cells may have an inhibitory effect on osteoblast differentiation and function.


Assuntos
Osteoblastos/citologia , Osteoblastos/metabolismo , Vitamina D/metabolismo , Proteínas Wnt/metabolismo , Células 3T3 , Fosfatase Alcalina/metabolismo , Animais , Sequência de Bases , Calcitriol/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/genética , Primers do DNA/genética , Células L , Cloreto de Lítio/farmacologia , Camundongos , Osteoblastos/efeitos dos fármacos , Osteocalcina/metabolismo , Transdução de Sinais , Transfecção , Proteínas Wnt/genética , Proteína Wnt3
15.
J Biol Chem ; 282(26): 19092-102, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17491016

RESUMO

The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1(-/-) mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.


Assuntos
Osso e Ossos/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Fatores Etários , Animais , Comportamento Animal/fisiologia , Densidade Óssea/fisiologia , Osso e Ossos/citologia , Células Cultivadas , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Fenótipo , Células Estromais/metabolismo
16.
J Biol Chem ; 282(26): 19082-91, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17491022

RESUMO

Germ line or hypothalamus-specific deletion of Y2 receptors in mice results in a doubling of trabecular bone volume. However, the specific mechanism by which deletion of Y2 receptors increases bone mass has not yet been identified. Here we show that cultured adherent bone marrow stromal cells from Y2(-/-) mice also demonstrate increased mineralization in vitro. Isolation of two populations of progenitor cell types, an immature mesenchymal stem cell population and a more highly differentiated population of progenitor cells, revealed a greater number of the progenitor cells within the bone of Y2(-/-) mice. Analysis of Y receptor transcripts in cultured stromal cells from wild-type mice revealed high levels of Y1 but not Y2, Y4, Y5, or y6 receptor mRNA. Interestingly, germ line Y2 receptor deletion causes Y1 receptor down-regulation in stromal cells and bone tissue possibly due to the lack of feedback inhibition of NPY release and subsequent overstimulation of Y1 receptors. Furthermore, deletion of Y1 receptors resulted in increased bone mineral density in mice. Together, these findings indicate that the greater number of mesenchymal progenitors and the altered Y1 receptor expression within bone cells in the absence of Y2 receptors are a likely mechanism for the greater bone mineralization in vivo and in vitro, opening up potential new treatment avenues for osteoporosis.


Assuntos
Desenvolvimento Ósseo/fisiologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Receptores de Neuropeptídeo Y/genética , Adipócitos/citologia , Animais , Células da Medula Óssea/citologia , Calcificação Fisiológica/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação para Baixo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mutação em Linhagem Germinativa , Camundongos , Camundongos Knockout , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/fisiologia , Células Estromais/citologia
17.
BJU Int ; 99(4): 735-42, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17166237

RESUMO

The interplay in prostate cancer bone metastases between the 'seed' (the prostate cancer cells) and the 'soil' (the bone microenvironment) has been increasingly recognized as integral to the remarkable tropism for bone shown by prostate cancer. Increasing research into this area is elucidating the mechanisms involved in this complex 'cross-talk'. Recent developments, including the use of bisphosphonates in metastatic disease, highlight the important role of bone cells in the development and progression of metastatic prostate cancer. We review the current reports emphasising these possible mechanisms and indicating possible factors for future treatment directions.


Assuntos
Neoplasias Ósseas/metabolismo , Comunicação Celular/fisiologia , Neoplasias da Próstata/metabolismo , Envelhecimento/fisiologia , Densidade Óssea/fisiologia , Neoplasias Ósseas/secundário , Remodelação Óssea/fisiologia , Hormônios/fisiologia , Humanos , Masculino , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/patologia
18.
J Bone Miner Res ; 21(10): 1600-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16995815

RESUMO

UNLABELLED: NeuropeptideY-, Y2 receptor (Y2)-, and leptin-deficient mice show similar anabolic action in cancellous bone but have not been assessed in cortical bone. Cortical bone mass is elevated in Y2(-/-) mice through greater osteoblast activity. In contrast, leptin deficiency results in reduced bone mass. We show opposing central regulation of cortical bone. INTRODUCTION: Treatment of osteoporosis is confounded by a lack of agents capable of stimulating the formation of bone by osteoblasts. Recently, the brain has been identified as a potent anabolic regulator of bone formation. Hypothalamic leptin or Y2 receptor signaling are known to regulate osteoblast activity in cancellous bone. However, assessment of these pathways in the structural cortical bone is critical to understanding their role in skeletal health and their potential clinical relevance to osteoporosis and its treatment. MATERIALS AND METHODS: Long bones of 16-week male ob/ob and germline and hypothalamic Y2(-/-) mice were assessed by QCT. Cortical osteoblast activity was assessed histologically. RESULTS: The femora of skeletally mature Y2(-/-) mice and of leptin-deficient ob/ob and Y2(-/-)ob/ob mice were assessed for changes in cortical osteoblast activity and bone mass. Ablation of Y2 receptors increased osteoblast activity on both endosteal and periosteal surfaces, independent of leptin, resulting in increased cortical bone mass and density in Y2(-/-) mice along the entire femur. Importantly, these changes were evident after deletion of hypothalamic Y2 receptors in adult mice, with a 5-fold elevation in periosteal bone formation. This is in marked contrast to leptin-deficient models that displayed reduced cortical mass and density. These changes were associated with substantial differences in calculated strength between the Y2(-/-) and leptin-deficient mice. CONCLUSIONS: These results indicate that the Y2-mediated anabolic pathway stimulates cortical and cancellous bone formation, whereas the leptin-mediated pathway has opposing effects in cortical and cancellous bone, diminishing the production of cortical bone. The findings from conditional hypothalamic Y2 knockout show a novel, inducible control mechanism for cortical bone formation and a potential new pathway for anabolic treatment of osteoporosis.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Osteogênese/fisiologia , Receptores de Neuropeptídeo Y/metabolismo , Animais , Fêmur/metabolismo , Fêmur/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Receptores para Leptina , Receptores de Neuropeptídeo Y/deficiência , Receptores de Neuropeptídeo Y/genética , Transdução de Sinais
19.
J Bone Miner Res ; 21(10): 1618-26, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16995817

RESUMO

UNLABELLED: Vitamin D acts through the immature osteoblast to stimulate osteoclastogenesis. Transgenic elevation of VDR in mature osteoblasts was found to inhibit osteoclastogenesis associated with an altered OPG response. This inhibition was confined to cancellous bone. This study indicates that vitamin D-mediated osteoclastogenesis is regulated locally by OPG production in the mature osteoblast. INTRODUCTION: Vitamin D stimulates osteoclastogenesis acting through its nuclear receptor (VDR) in immature osteoblast/stromal cells. This mobilization of calcium stores does not occur in a random manner, with bone preferentially removed from cancellous bone. The process whereby the systemic, humoral regulator is targeted to a particular region of the skeleton is unclear. MATERIALS AND METHODS: Bone resorption was assessed in mice with vitamin D receptor transgenically elevated in mature osteoblasts (OSVDR). Vitamin D-mediated osteoclastogenesis was examined in vitro using OSVDR osteoblasts and osteoblastic RANKL: osteoprotegerin (OPG) examined in vivo and in vitro after vitamin D treatment. RESULTS: Vitamin D-mediated osteoclastogenesis was reduced in OSVDR mice on chow and calcium-restricted diets, with effects confined to cancellous bone. OSVDR osteoblasts had a reduced capacity to support osteoclastogenesis in culture. The vitamin D-mediated reduction in OPG expression was reduced in OSVDR osteoblasts in vivo and in vitro, resulting in a reduced RANKL/OPG ratio in OSVDR compared with wildtype, after exposure to vitamin D. CONCLUSIONS: Mature osteoblasts play an inhibitory role in bone resorption, with active vitamin D metabolites acting through the VDR to increase OPG. This inhibition is less active in cancellous bone, effectively targeting this region for resorption after the systemic release of activated vitamin D metabolites.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Osteoblastos/metabolismo , Vitamina D/farmacologia , Animais , Cálcio da Dieta/administração & dosagem , Cálcio da Dieta/farmacologia , Técnicas de Cocultura , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
20.
J Biol Chem ; 281(33): 23436-44, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16785231

RESUMO

Reduction in levels of sex hormones at menopause in women is associated with two common, major outcomes, the accumulation of white adipose tissue, and the progressive loss of bone because of excess osteoclastic bone resorption exceeding osteoblastic bone formation. Current antiresorptive therapies can reduce osteoclastic activity but have only limited capacity to stimulate osteoblastic bone formation and restore lost skeletal mass. Likewise, the availability of effective pharmacological weight loss treatments is currently limited. Here we demonstrate that conditional deletion of hypothalamic neuropeptide Y2 receptors can prevent ongoing bone loss in sex hormone-deficient adult male and female mice. This benefit is attributable solely to activation of an anabolic osteoblastic bone formation response that counterbalances persistent elevation of bone resorption, suggesting the Y2-mediated anabolic pathway to be independent of sex hormones. Furthermore, the increase in fat mass that typically occurs after ovariectomy is prevented by germ line deletion of Y2 receptors, whereas in male mice body weight and fat mass were consistently lower than wild-type regardless of sex hormone status. Therefore, this study indicates a role for Y2 receptors in the accumulation of adipose tissue in the hypogonadal state and demonstrates that hypothalamic Y2 receptors constitutively restrain osteoblastic activity even in the absence of sex hormones. The increase in bone formation after release of this tonic inhibition suggests a promising new avenue for osteoporosis treatment.


Assuntos
Envelhecimento/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Deleção de Genes , Hipotálamo/metabolismo , Orquiectomia , Receptores de Neuropeptídeo Y/deficiência , Receptores de Neuropeptídeo Y/genética , Tecido Adiposo/fisiopatologia , Envelhecimento/genética , Animais , Peso Corporal/genética , Reabsorção Óssea/genética , Reabsorção Óssea/fisiopatologia , Feminino , Fêmur/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Orquiectomia/efeitos adversos , Coluna Vertebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA