Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Commun ; 13(1): 7588, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481666

RESUMO

The eukaryotic proteome undergoes constant surveillance by quality control systems that either sequester, refold, or eliminate aberrant proteins by ubiquitin-dependent mechanisms. Ubiquitin-conjugation necessitates the recognition of degradation determinants, termed degrons, by their cognate E3 ubiquitin-protein ligases. To learn about the distinctive properties of quality control degrons, we performed an unbiased peptidome stability screen in yeast. The search identify a large cohort of proteome-derived degrons, some of which exhibited broad E3 ligase specificity. Consequent application of a machine-learning algorithm establishes constraints governing degron potency, including the amino acid composition and secondary structure propensities. According to the set criteria, degrons with transmembrane domain-like characteristics are the most probable sequences to act as degrons. Similar quality control degrons are present in viral and human proteins, suggesting conserved degradation mechanisms. Altogether, the emerging data indicate that transmembrane domain-like degron features have been preserved in evolution as key quality control determinants of protein half-life.


Assuntos
Proteoma , Saccharomyces cerevisiae , Ubiquitina , Humanos , Saccharomyces cerevisiae/genética
2.
Biomolecules ; 11(11)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34827617

RESUMO

Cellular homeostasis depends on robust protein quality control (PQC) pathways that discern misfolded proteins from functional ones in the cell. One major branch of PQC involves the controlled degradation of misfolded proteins by the ubiquitin-proteasome system. Here ubiquitin ligases must recognize and bind to misfolded proteins with sufficient energy to form a complex and with an adequate half-life to achieve poly-ubiquitin chain formation, the signal for protein degradation, prior to its dissociation from the ligase. It is not well understood how PQC ubiquitin ligases accomplish these tasks. Employing a fully reconstituted enzyme and substrate system to perform quantitative biochemical experiments, we demonstrate that the yeast PQC ubiquitin ligase San1 contains multiple substrate binding sites along its polypeptide chain that appear to display specificity for unique misfolded proteins. The results are consistent with a model where these substrate binding sites enable San1 to bind to misfolded substrates avidly, resulting in high affinity ubiquitin ligase-substrate complexes.


Assuntos
Saccharomyces cerevisiae , Ubiquitina , Complexo de Endopeptidases do Proteassoma , Ubiquitina-Proteína Ligases
3.
Mol Biol Cell ; 32(11): 1121-1133, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33788582

RESUMO

Stress is ubiquitous to life and can irreparably damage essential biomolecules and organelles in cells. To survive, organisms must sense and adapt to stressful conditions. One highly conserved adaptive stress response is through the posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO). Here, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae. We found that cells exhibit a transient sumoylation response after acute exposure to ≤7.5% vol/vol ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol exposure. Mass spectrometry analyses identified 18 proteins that are sumoylated after acute ethanol exposure, with 15 known to associate with chromatin. Upon further analysis, we found that the chromatin structural proteins Smc5 and Smc6 undergo ethanol-induced sumoylation that depends on the activity of the E3 SUMO ligase Mms21. Using cell-cycle arrest assays, we observed that Smc5 and Smc6 ethanol-induced sumoylation occurs during G1 and G2/M phases but not S phase. Acute ethanol exposure also resulted in the formation of Rad52 foci at levels comparable to Rad52 foci formation after exposure to the DNA alkylating agent methyl methanesulfonate (MMS). MMS exposure is known to induce the intra-S-phase DNA damage checkpoint via Rad53 phosphorylation, but ethanol exposure did not induce Rad53 phosphorylation. Ethanol abrogated the effect of MMS on Rad53 phosphorylation when added simultaneously. From these studies, we propose that acute ethanol exposure induces a change in chromatin leading to sumoylation of specific chromatin structural proteins.


Assuntos
Cromatina/efeitos dos fármacos , Etanol/efeitos adversos , Estresse Fisiológico/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Cromossomos/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/metabolismo , Etanol/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo
4.
Mol Biol Cell ; 31(3): 221-233, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31825716

RESUMO

Protein misfolding is a recurring phenomenon that cells must manage; otherwise misfolded proteins can aggregate and become toxic should they persist. To counter this burden, cells have evolved protein quality control (PQC) mechanisms that manage misfolded proteins. Two classes of systems that function in PQC are chaperones that aid in protein folding and ubiquitin-protein ligases that ubiquitinate misfolded proteins for proteasomal degradation. How folding and degradative PQC systems interact and coordinate their respective functions is not yet fully understood. Previous studies of PQC degradation pathways in the endoplasmic reticulum and cytosol have led to the prevailing idea that these pathways require the activity of Hsp70 chaperones. Here, we find that involvement of the budding yeast Hsp70 chaperones Ssa1 and Ssa2 in nuclear PQC degradation varies with the substrate. In particular, nuclear PQC degradation mediated by the yeast ubiquitin-protein ligase San1 often involves Ssa1/Ssa2, but San1 substrate recognition and ubiquitination can proceed without these Hsp70 chaperone functions in vivo and in vitro. Our studies provide new insights into the variability of Hsp70 chaperone involvement with a nuclear PQC degradation pathway.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Dobramento de Proteína , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
PLoS Genet ; 15(4): e1008115, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009461

RESUMO

Environmental stressors can severely perturb cellular homeostasis and compromise viability. To cope with environmental stressors, eukaryotes have developed distinct signaling programs that allow for adaptation during different stress conditions. These programs often require a host of post-translational modifications that alter proteins to elicit appropriate cellular responses. One crucial protein modifier during stress is the small ubiquitin-like modifier SUMO. In many cases, however, the functions of stress dependent protein SUMOylation remain unclear. Previously, we showed that the conserved Saccharomyces cerevisiae Cyc8-Tup1 transcriptional corepressor complex undergoes transient hyperosmotic stress-induced SUMOylation and inclusion formation, which are important for appropriate regulation of hyperosmotic-stress genes. Here, we show the osmostress-responsive MAP kinase Hog1 regulates Cyc8 SUMOylation and inclusion formation via its role in the transcriptional activation of glycerol biosynthesis genes. Mutations that ablate Cyc8 SUMOylation can partially rescue the osmosensitivity of hog1Δ cells, and this is facilitated by inappropriate derepression of glycerol-biosynthesis genes. Furthermore, cells specifically unable to synthesize the osmolyte glycerol cause transient Cyc8 SUMOylation and inclusions to persist, indicating a regulatory role for glycerol to reestablish the basal state of Cyc8 following adaptation to hyperosmotic stress. These observations unveil a novel intersection between phosphorylation and SUMOylation networks, which are critical for shifting gene expression and metabolic programs during stress adaptation.


Assuntos
Caseínas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Vegetais Comestíveis/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Carboidratos , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Lipídeos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Pressão Osmótica , Sumoilação , Ativação Transcricional
6.
Methods Mol Biol ; 1844: 121-136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242707

RESUMO

Since its discovery nearly 40 years ago, many components of the ubiquitin-proteasome system (UPS) have been identified and characterized in detail. However, a key aspect of the UPS that remains largely obscure is the signals that initiate the interaction of a substrate with enzymes of the UPS machinery. Understanding these signals is of particular interest for studies that examine the mechanism of substrate recognition for proteins that have adopted a non-native structure, as part of the cellular protein quality control (PQC) defense mechanism. Such studies are quite salient as the entire proteome makes up the potential battery of PQC substrates, and yet only a limited number of ubiquitination pathways are known to handle misfolded proteins. Our current research aims at understanding how a small number of PQC ubiquitin-protein ligases specifically recognize and ubiquitinate the overwhelming assortment of misfolded proteins. Here, we present a new proteogenomic approach for identifying and characterizing recognition motifs within degradation elements (degrons) in a high-throughput manner. The method utilizes yeast growth under restrictive conditions for selecting protein fragments that confer instability. The corresponding cDNA fragments are analyzed by next-generation sequencing (NGS) that provides information about each fragment's identity, reading frame, and abundance over time. This method was used by us to identify PQC-specific and compartment-specific degrons. It can readily be modified to study protein degradation signals and pathways in other organisms and in various settings, such as different strain backgrounds and under various cell conditions, all of which can be sequenced and analyzed simultaneously.


Assuntos
Motivos de Aminoácidos , Células Eucarióticas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteogenômica , Interpretação Estatística de Dados , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Biblioteca Gênica , Vetores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica , Proteogenômica/métodos , Ubiquitina/genética , Ubiquitina/metabolismo , Leveduras/genética , Leveduras/metabolismo
7.
Annu Rev Biochem ; 87: 725-749, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925261

RESUMO

Nuclear proteins participate in diverse cellular processes, many of which are essential for cell survival and viability. To maintain optimal nuclear physiology, the cell employs the ubiquitin-proteasome system to eliminate damaged and misfolded proteins in the nucleus that could otherwise harm the cell. In this review, we highlight the current knowledge about the major ubiquitin-protein ligases involved in protein quality control degradation (PQCD) in the nucleus and how they orchestrate their functions to eliminate misfolded proteins in different nuclear subcompartments. Many human disorders are causally linked to protein misfolding in the nucleus, hence we discuss major concepts that still need to be clarified to better understand the basis of the nuclear misfolded proteins' toxic effects. Additionally, we touch upon potential strategies for manipulating nuclear PQCD pathways to ameliorate diseases associated with protein misfolding and aggregation in the nucleus.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Envelhecimento/metabolismo , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregação Patológica de Proteínas/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Deficiências na Proteostase/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo
8.
Mol Cell ; 70(6): 989-990, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932909

RESUMO

In the current issue of Molecular Cell, Szoradi et al. (2018) present compelling data demonstrating how the newly identified SHRED pathway in yeast selectively shifts the E3 ligase Ubr1 specificity from N-end rule substrates to misfolded proteins in cells under proteostatic stress.


Assuntos
Saccharomyces cerevisiae , Ubiquitina , Proteínas , Proteínas de Saccharomyces cerevisiae , Especificidade por Substrato , Ubiquitina-Proteína Ligases
9.
Behav Brain Res ; 337: 34-45, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28927719

RESUMO

Huntington's Disease (HD) is an autosomal dominant neurodegenerative disease characterized by gradual deterioration of motor and cognitive functions and development of psychiatric deficits. Animal models provide powerful means to study the pathological processes, molecular dysfunctions and symptoms associated with HD. We performed a longitudinal behavioral study of the newly developed HdhQ350/+ mouse line, a knock-in model that expresses a repeat of 350 glutamines. We found remarkable sex-dependent differences on symptom onset and severity. While both sexes lose weight and grip strength, only HdhQ350/+ males have impaired motor coordination as measured by the rotarod and alterations in gait as measured by the catwalk assay. While HdhQ350/+ females do not exhibit impairment in motor coordination, we found a reduction in dark phase locomotor activity. Male and female HdhQ350/+ mice do not show anxiety as measured by the elevated plus maze or changes in exploration as measured by the open field test. To investigate these sex-dependent differences, we performed western blot analyses of striatal tissue. We measured equal mutant huntingtin protein expression in both sexes and found evidence of aggregation. We found the expected decrease of DARPP-32 expression only in female HdhQ350/+ mice. Remarkably, we found no evidence of reduction in synaptophysin or CB1 receptors in HdhQ350/+ tissue of either sex. Our study indicates that male and female HdhQ350/+ mice differentially recapitulate select behavioral impairments commonly measured in other HD mouse models with limited sex-dependent changes in recognized histopathological markers. We conclude that expanded polyglutamine repeats influence HD pathogenesis in a sex-dependent manner.


Assuntos
Modelos Animais de Doenças , Proteína Huntingtina/genética , Transtornos Mentais/genética , Repetições de Trinucleotídeos/genética , Fatores Etários , Animais , Peso Corporal/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Marcha/genética , Regulação da Expressão Gênica/genética , Força da Mão/fisiologia , Locomoção/genética , Masculino , Transtornos Mentais/patologia , Transtornos Mentais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Desempenho Psicomotor/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Fatores Sexuais
10.
J Appl Psychol ; 102(6): 890-909, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28277728

RESUMO

As employee careers have evolved from linear trajectories confined within 1 organization to more dynamic and boundaryless paths, organizations and individuals alike have increasingly considered reestablishing prior employment relationships. These "boomerang employees" follow career paths that feature 2 or more temporally separated tenures in particular organizations ("boomerang organizations"). Yet, research to date is mute on how or to what extent differences across boomerang employees' career experiences, and the learning and knowledge developed at and away from boomerang organizations, meaningfully impact their performance following their return. Addressing this omission, we extend a careers-based learning perspective to construct a theoretical framework of a parsimonious, yet generalizable, set of factors that influence boomerang employee return performance. Results based on a sample of boomerang employees and employers in the same industry (professional basketball) indicate that intra- and extraorganizational knowledge construction and disruptions, as well as transition events, are significantly predictive of boomerangs' return performance. Comparisons with 2 matched samples of nonboomerang employees likewise suggest distinctive patterns in the performance of boomerang employees. (PsycINFO Database Record


Assuntos
Escolha da Profissão , Mobilidade Ocupacional , Desempenho Profissional , Adulto , Humanos
11.
J Biol Chem ; 291(49): 25364-25374, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27758857

RESUMO

Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation of interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. Additionally, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.


Assuntos
Receptor Quinase 1 Acoplada a Proteína G/química , Proteínas de Membrana/química , Proteínas dos Microfilamentos/química , Complexos Multiproteicos/química , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Miosina Tipo II/química , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
12.
Mol Cell ; 63(6): 1055-65, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27618491

RESUMO

The ubiquitin-proteasome system (UPS) for protein degradation has been under intensive study, and yet, we have only partial understanding of mechanisms by which proteins are selected to be targeted for proteolysis. One of the obstacles in studying these recognition pathways is the limited repertoire of known degradation signals (degrons). To better understand what determines the susceptibility of intracellular proteins to degradation by the UPS, we developed an unbiased method for large-scale identification of eukaryotic degrons. Using a reporter-based high-throughput competition assay, followed by deep sequencing, we measured a degradation potency index for thousands of native polypeptides in a single experiment. We further used this method to identify protein quality control (PQC)-specific and compartment-specific degrons. Our method provides an unprecedented insight into the yeast degronome, and it can readily be modified to study protein degradation signals and pathways in other organisms and in various settings.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Sítios de Ligação , Mapeamento Cromossômico , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
13.
Elife ; 52016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27525484

RESUMO

Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Regulação da Expressão Gênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
14.
J Biol Chem ; 291(36): 18778-90, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27405755

RESUMO

Protein quality control (PQC) is a critical process wherein misfolded or damaged proteins are cleared from the cell to maintain protein homeostasis. In eukaryotic cells, the removal of misfolded proteins is primarily accomplished by the ubiquitin-proteasome system. In the ubiquitin-proteasome system, ubiquitin-conjugating enzymes and ubiquitin ligases append polyubiquitin chains onto misfolded protein substrates signaling for their degradation. The kinetics of protein ubiquitylation are paramount as a balance must be achieved between the rapid removal of misfolded proteins versus providing sufficient time for protein chaperones to attempt refolding. To uncover the molecular basis for how PQC substrate ubiquitylation rates are controlled, the reaction catalyzed by nuclear ubiquitin ligase San1 was reconstituted in vitro Our results demonstrate that San1 can function with two ubiquitin-conjugating enzymes, Cdc34 and Ubc1. Although Cdc34 and Ubc1 are both sufficient for promoting San1 activity, San1 functions preferentially with Ubc1, including when both Ubc1 and Cdc34 are present. Notably, a homogeneous peptide that mimics a misfolded PQC substrate was developed and enabled quantification of the kinetics of San1-catalyzed ubiquitylation reactions. We discuss how these results may have broad implications for the regulation of PQC-mediated protein degradation.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
15.
Curr Opin Cell Biol ; 40: 81-89, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27015023

RESUMO

The nucleus is the repository for the eukaryotic cell's genetic blueprint, which must be protected from harm to ensure survival. Multiple quality control (QC) pathways operate in the nucleus to maintain the integrity of the DNA, the fidelity of the DNA code during replication, its transcription into mRNA, and the functional structure of the proteins that are required for DNA maintenance, mRNA transcription, and other important nuclear processes. Although we understand a great deal about DNA and RNA QC mechanisms, we know far less about nuclear protein quality control (PQC) mechanisms despite that fact that many human diseases are causally linked to protein misfolding in the nucleus. In this review, we discuss what is known about nuclear PQC and we highlight new questions that have emerged from recent developments in nuclear PQC studies.


Assuntos
Núcleo Celular/metabolismo , Células Eucarióticas/metabolismo , Animais , Replicação do DNA , Humanos , Proteínas Nucleares/metabolismo , Dobramento de Proteína , RNA Mensageiro/metabolismo , Transcrição Gênica , Leveduras/citologia , Leveduras/metabolismo
16.
PLoS Genet ; 12(1): e1005809, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26800527

RESUMO

Cells are often exposed to physical or chemical stresses that can damage the structures of essential biomolecules. Stress-induced cellular damage can become deleterious if not managed appropriately. Rapid and adaptive responses to stresses are therefore crucial for cell survival. In eukaryotic cells, different stresses trigger post-translational modification of proteins with the small ubiquitin-like modifier SUMO. However, the specific regulatory roles of sumoylation in each stress response are not well understood. Here, we examined the sumoylation events that occur in budding yeast after exposure to hyperosmotic stress. We discovered by proteomic and biochemical analyses that hyperosmotic stress incurs the rapid and transient sumoylation of Cyc8 and Tup1, which together form a conserved transcription corepressor complex that regulates hundreds of genes. Gene expression and cell biological analyses revealed that sumoylation of each protein directs distinct outcomes. In particular, we discovered that Cyc8 sumoylation prevents the persistence of hyperosmotic stress-induced Cyc8-Tup1 inclusions, which involves a glutamine-rich prion domain in Cyc8. We propose that sumoylation protects against persistent inclusion formation during hyperosmotic stress, allowing optimal transcriptional function of the Cyc8-Tup1 complex.


Assuntos
Proteômica , Proteínas Repressoras/biossíntese , Sumoilação/genética , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Pressão Osmótica , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae
17.
J Biol Chem ; 290(33): 20601-12, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26149687

RESUMO

In the canonical view of protein function, it is generally accepted that the three-dimensional structure of a protein determines its function. However, the past decade has seen a dramatic growth in the identification of proteins with extensive intrinsically disordered regions (IDRs), which are conformationally plastic and do not appear to adopt single three-dimensional structures. One current paradigm for IDR function is that disorder enables IDRs to adopt multiple conformations, expanding the ability of a protein to interact with a wide variety of disparate proteins. The capacity for many interactions is an important feature of proteins that occupy the hubs of protein networks, in particular protein-modifying enzymes that usually have a broad spectrum of substrates. One such protein modification is ubiquitination, where ubiquitin is attached to proteins through ubiquitin ligases (E3s) and removed through deubiquitinating enzymes. Numerous proteomic studies have found that thousands of proteins are dynamically regulated by cycles of ubiquitination and deubiquitination. Thus, how these enzymes target their wide array of substrates is of considerable importance for understanding the function of the cell's diverse ubiquitination networks. Here, we characterize a yeast deubiquitinating enzyme, Ubp10, that possesses IDRs flanking its catalytic protease domain. We show that Ubp10 possesses multiple, distinct binding modules within its IDRs that are necessary and sufficient for directing protein interactions important for Ubp10's known roles in gene silencing and ribosome biogenesis. The human homolog of Ubp10, USP36, also has IDRs flanking its catalytic domain, and these IDRs similarly contain binding modules important for protein interactions. This work highlights the significant protein interaction scaffolding abilities of IDRs in the regulation of dynamic protein ubiquitination.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina Tiolesterase/metabolismo , Sítios de Ligação , Domínio Catalítico , Humanos , Proteínas Nucleares/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina Tiolesterase/química
18.
Structure ; 23(7): 1151-2, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26153878

RESUMO

Proteins rely on three-dimensional structure for function, yet many proteins are marginally stable and prone to misfolding. In this issue of Structure, Brock et al. (2015) present a novel computational modeling method to gain insights into protein stability and misfolding.


Assuntos
Proteína Supressora de Tumor Von Hippel-Lindau/química , Humanos
19.
J Appl Psychol ; 99(6): 1059-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25243994

RESUMO

The organizational justice literature has examined the effects of supervisor-focused interpersonal justice climate, or a team's shared perception of the dignity and respect it receives from its supervisor, on a number of important outcomes directed at organizational authorities. Considerably less is known about the potential influence of these shared perceptions on coworker-directed outcomes. In 2 experiments, we predict that a low (unfair) supervisor-focused interpersonal justice climate generates greater team cohesiveness than a high (fair) supervisor-focused interpersonal justice climate. We further examine the process through which this effect occurs. Drawing from cognitive dissonance theory, we predict that low (vs. high) supervisor-focused interpersonal justice climate generates greater team dissonance, or shared psychological discomfort, for team members and that this dissonance serves as an underlying mechanism through which supervisor-focused interpersonal justice climate influences a team's cohesiveness. Our results demonstrate support for these predictions in that low supervisor-focused interpersonal justice climate led to higher levels of both team dissonance and team cohesiveness than did high supervisor-focused interpersonal justice climate, and team dissonance mediated this relationship. Implications and areas for future research are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).


Assuntos
Comportamento Cooperativo , Processos Grupais , Satisfação no Emprego , Liderança , Justiça Social/psicologia , Adulto , Feminino , Humanos , Masculino , Cultura Organizacional , Estudantes/psicologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA