Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Headache Pain ; 25(1): 36, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481170

RESUMO

BACKGROUND: The upper cervical dorsal root ganglia (DRG) are important for the transmission of sensory information associated with the back of the head and neck, contributing to head pain. Calcitonin receptor (CTR)-based receptors, such as the amylin 1 (AMY1) receptor, and ligands, calcitonin gene-related peptide (CGRP) and amylin, have been linked to migraine and pain. However, the contribution of this system to nociception involving the cervical DRG is unclear. Therefore, this study aimed to determine the relative distribution of the CTR, CGRP, and amylin in upper cervical DRG. METHODS: CTR, CGRP, and amylin immunofluorescence was examined relative to neural markers in C1/2 DRG from male and female mice, rats, and human cases. Immunofluorescence was supported by RNA-fluorescence in situ hybridization examining amylin mRNA distribution in rat DRG. RESULTS: Amylin immunofluorescence was observed in neuronal soma and fibres. Amylin mRNA (Iapp) was also detected. Amylin and CGRP co-expression was observed in 19% (mouse), 17% (rat), and 36% (human) of DRG neurons in distinct vesicle-like neuronal puncta from one another. CTR immunoreactivity was present in DRG neurons, and both peptides produced receptor signalling in primary DRG cell cultures. CTR-positive neurons frequently co-expressed amylin and/or CGRP (66% rat; 84% human), with some sex differences. CONCLUSIONS: Amylin and CGRP could both be local peptide agonists for CTR-based receptors in upper cervical DRG, potentially acting through autocrine and/or paracrine signalling mechanisms to modulate neuron function. Amylin and its receptors could represent novel pain targets.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Receptores da Calcitonina , Ratos , Feminino , Masculino , Humanos , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Gânglios Espinais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Hibridização in Situ Fluorescente , Dor , RNA Mensageiro
2.
Biophys Chem ; 308: 107201, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452520

RESUMO

Amylin is released by pancreatic beta-cells in response to a meal and its major soluble mature form (37 amino acid-peptide) produces its biological effects by activating amylin receptors. Amylin is derived from larger propeptides that are processed within the synthesizing beta-cell. There are suggestions that a partially processed form, pro-amylin(1-48) is also secreted. We tested the hypothesis that pro-amylin(1-48) has biological activity and that human pro-amylin(1-48) may also form toxic pre-amyloid species. Amyloid formation, the ability to cross-seed and in vitro toxicity were similar between human pro-amylin(1-48) and amylin. Human pro-amylin(1-48) was active at amylin-responsive receptors, though its potency was reduced at rat, but not human amylin receptors. Pro-amylin(1-48) was able to promote anorexia by activating neurons of the area postrema, amylin's primary site of action, indicating that amylin can tolerate significant additions at the N-terminus without losing bioactivity. Our studies help to shed light on the possible roles of pro-amylin(1-48) which may be relevant for the development of future amylin-based drugs.


Assuntos
Amiloide , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Ratos , Animais , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas
3.
Br J Pharmacol ; 181(1): 142-161, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37580864

RESUMO

BACKGROUND AND PURPOSE: Calcitonin gene-related peptide (CGRP) is involved in migraine pathophysiology. CGRP can signal through two receptors. The canonical CGRP receptor comprises the calcitonin receptor-like receptor and receptor activity-modifying protein 1 (RAMP1); the AMY1 receptor comprises the calcitonin receptor with RAMP1. Drugs that reduce CGRP activity, such as receptor antagonists, are approved for the treatment and prevention of migraine. Despite being designed to target the canonical CGRP receptor, emerging evidence suggests that these antagonists, including erenumab (a monoclonal antibody antagonist) can also antagonise the AMY1 receptor. However, it is difficult to estimate its selectivity because direct comparisons between receptors under matched conditions have not been made. We therefore characterised erenumab at both CGRP-responsive receptors with multiple ligands, including αCGRP and ßCGRP. EXPERIMENTAL APPROACH: Erenumab antagonism was quantified through IC50 and pKB experiments, measuring cAMP production. We used SK-N-MC cells which endogenously express the human CGRP receptor, and HEK293S and Cos7 cells transiently transfected to express either human CGRP or AMY1 receptors. KEY RESULTS: Erenumab antagonised both the CGRP and AMY1 receptors with an ~20-120-fold preference for the CGRP receptor, depending on the cells, agonist, analytical approach and/or assay format. Erenumab antagonised both forms of CGRP equally, and appeared to act as a competitive reversible antagonist at both receptors. CONCLUSION AND IMPLICATIONS: Despite being designed to target the CGRP receptor, erenumab can antagonise the AMY1 receptor. Its ability to antagonise CGRP activity at both receptors may be useful in better understanding the clinical profile of erenumab.


Assuntos
Transtornos de Enxaqueca , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Humanos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Receptores da Calcitonina
4.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555690

RESUMO

Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools. We profiled antibodies for immunodetection of RAMP1 using Western blotting, immunocytochemistry and immunohistochemistry, including using RAMP1 knockout mouse tissue. Most antibodies could detect RAMP1 in Western blotting and immunocytochemistry using transfected cells. Two antibodies (844, ab256575) could detect a RAMP1-like band in Western blots of rodent brain but not RAMP1 knockout mice. However, cross-reactivity with other proteins was evident for all antibodies. This cross-reactivity prevented clear conclusions about RAMP1 anatomical localization, as each antibody detected a distinct pattern of immunoreactivity in rodent brain. We cannot confidently attribute immunoreactivity produced by RAMP1 antibodies (including 844) to the presence of RAMP1 protein in immunohistochemical applications in brain tissue. RAMP1 expression in brain and other tissues therefore needs to be revisited using RAMP1 antibodies that have been comprehensively validated using multiple strategies to establish multiple lines of convincing evidence. As RAMP1 is important for other GPCR/ligand pairings, our results have broader significance beyond the CGRP field.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Camundongos , Animais , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Imuno-Histoquímica , Transtornos de Enxaqueca/metabolismo
5.
Headache ; 62(9): 1093-1104, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36226379

RESUMO

OBJECTIVE: To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies. BACKGROUND: Therapeutics that dampen calcitonin gene-related peptide (CGRP) signaling are now in clinical use to prevent or treat migraine. However, CGRP belongs to a broader peptide family, including the peptides amylin and adrenomedullin. Receptors for this family are complex, displaying overlapping pharmacologic profiles. Despite the focus on CGRP and the CGRP receptor in migraine research, recent evidence implicates related peptides and receptors in migraine. METHODS: This narrative review summarizes literature encompassing the current pharmacologic understanding of the calcitonin peptide family, and the evidence that links specific members of this family to migraine and migraine-like behaviors. RESULTS: Recent work links amylin and adrenomedullin to migraine-like behavior in rodent models and migraine-like attacks in individuals with migraine. We collate novel information that suggests females may be more sensitive to amylin and CGRP in the context of migraine-like behaviors. We report that drugs designed to antagonize the canonical CGRP receptor also antagonize a second CGRP-responsive receptor and speculate as to whether this influences therapeutic efficacy. We also discuss the specificity of current drugs with regards to CGRP isoforms and how this may influence therapeutic profiles. Lastly, we emphasize that receptors related to, but distinct from, the canonical CGRP receptor may represent underappreciated and novel drug targets. CONCLUSION: Multiple peptides within the calcitonin family have been linked to migraine. The current focus on CGRP and its canonical receptor may be obscuring pathways to further therapeutics. Drug discovery schemes that take a wider view of the receptor family may lead to the development of new anti-migraine drugs with favorable clinical profiles. We also propose that understanding these related peptides and receptors may improve our interpretation regarding the mechanism of action of current drugs.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Feminino , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Adrenomedulina/uso terapêutico , Calcitonina/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo
6.
Br J Pharmacol ; 179(3): 454-459, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34076887

RESUMO

The development of several drugs that target the calcitonin gene-related peptide (CGRP) system has been a major breakthrough in the pharmacological management of migraine. These are divided into two major classes, antibodies which bind to the CGRP peptide, preventing it from activating CGRP receptors and receptor antagonists. Within the receptor antagonist class, there are two mechanisms of action, small molecule receptor antagonists and an antibody antagonist. This mini-review considers the pharmacology of these receptor targeted antagonist drugs at the CGRP receptor and closely related AMY1 receptor, at which CGRP may also act. The antagonists are most potent at the CGRP receptor but can also show antagonism of the AMY1 receptor. However, important data are missing and selectivity parameters cannot be provided for all antagonists. The clinical implications of AMY1 receptor antagonism are unknown, but we urge consideration of this receptor as a potential contributing factor to CGRP and antagonist drug actions. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Assuntos
Transtornos de Enxaqueca , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Peptídeo Relacionado com Gene de Calcitonina , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Proteína Semelhante a Receptor de Calcitonina , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
7.
Br J Pharmacol ; 179(3): 416-434, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34289083

RESUMO

BACKGROUND AND PURPOSE: The calcitonin (CT) receptor family is complex, comprising two receptors (the CT receptor [CTR] and the CTR-like receptor [CLR]), three accessory proteins (RAMPs) and multiple endogenous peptides. This family contains several important drug targets, including CGRP, which is targeted by migraine therapeutics. The pharmacology of this receptor family is poorly characterised in species other than rats and humans. To facilitate understanding of translational and preclinical data, we need to know the receptor pharmacology of this family in mice. EXPERIMENTAL APPROACH: Plasmids encoding mouse CLR/CTR and RAMPs were transiently transfected into Cos-7 cells. cAMP production was measured in response to agonists in the absence or presence of antagonists. KEY RESULTS: We report the first synthesis and characterisation of mouse adrenomedullin, adrenomedullin 2 and ßCGRP and of mouse CTR without or with mouse RAMPs. Receptors containing m-CTR had subtly different pharmacology than human receptors; they were promiscuous in their pharmacology, both with and without RAMPs. Several peptides, including mouse αCGRP and mouse adrenomedullin 2, were potent agonists of the m-CTR:m-RAMP3 complex. Pharmacological profiles of receptors comprising m-CLR:m-RAMPs were generally similar to those of their human counterparts, albeit with reduced specificity. CONCLUSION AND IMPLICATIONS: Mouse receptor pharmacology differed from that in humans, with mouse receptors displaying reduced discrimination between ligands. This creates challenges for interpreting which receptor may underlie an effect in preclinical models and thus translation of findings from mice to humans. It also highlights the need for new ligands to differentiate between these complexes. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary).. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Assuntos
Transtornos de Enxaqueca , Hormônios Peptídicos , Adrenomedulina/metabolismo , Adrenomedulina/farmacologia , Animais , Calcitonina/metabolismo , Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/química , Humanos , Ligantes , Camundongos , Ratos , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina , Receptores da Calcitonina/química
8.
ACS Pharmacol Transl Sci ; 3(2): 246-262, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32296766

RESUMO

Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.

9.
Biochemistry ; 58(32): 3468-3474, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31328503

RESUMO

Adrenomedullin 2 (AM2) is a peptide hormone with potent effects in the cardiovascular system. The N-terminal disulfide loop of AM2 is thought to be important for interacting with its receptors to initiate a signaling response. However, the relative contribution of each amino acid within this region is currently unknown. Thus, the region was investigated using an alanine scanning approach. Two AM2 peptides (AM2-47 and AM2-40) were directly compared at the CGRP, AM1, and AM2 receptors in transfected Cos7 cells and found to have equivalent activity. Analogues of AM2-40 were then synthesized, substituting each individual amino acid within the disulfide loop with alanine. The ability of these analogues to stimulate a cAMP response was evaluated at the CGRP, AM1, and AM2 receptors. AM2-40 L12A and T14A were less able to elicit cAMP responses through all tested receptors. In contrast, AM2-40 G13A was slightly more potent than the unmodified peptide at all tested receptors. Thus, it appears that residues within the disulfide loop region play differential roles in the ability of AM2 to stimulate cAMP production. The data provide the first structure-function investigation of AM2 agonism.


Assuntos
Adrenomedulina/química , Adrenomedulina/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , AMP Cíclico/biossíntese , Humanos
10.
Biochemistry ; 57(32): 4915-4922, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30004692

RESUMO

Calcitonin gene-related peptide (CGRP) binds to the complex of the calcitonin receptor-like receptor (CLR) with receptor activity-modifying protein 1 (RAMP1). How CGRP interacts with the transmembrane domain (including the extracellular loops) of this family B receptor remains unclear. In this study, a photoaffinity cross-linker, p-azido l-phenylalanine (azF), was incorporated into CLR, chiefly in the second extracellular loop (ECL2) using genetic code expansion and unnatural amino acid mutagenesis. The method was optimized to ensure efficient photolysis of azF residues near the transmembrane bundle of the receptor. A CGRP analogue modified with fluorescein at position 15 was used for detection of ultraviolet-induced cross-linking. The methodology was verified by confirming the known contacts of CGRP to the extracellular domain of CLR. Within ECL2, the chief contacts were I284 on the loop itself and L291, at the top of the fifth transmembrane helix (TM5). Minor contacts were noted along the lip of ECL2 between S286 and L290 and also with M223 in TM3 and F349 in TM6. Full length molecular models of the bound receptor complex suggest that CGRP sits at the top of the TM bundle, with Thr6 of the peptide making contacts with L291 and H295. I284 is likely to contact Leu12 and Ala13 of CGRP, and Leu16 of CGRP is at the ECL/extracellular domain boundary of CLR. The reduced potency, Emax, and affinity of [Leu16Ala]-human α CGRP are consistent with this model. Contacts between Thr6 of CGRP and H295 may be particularly important for receptor activation.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/química , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/genética , Humanos , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína , Proteína 1 Modificadora da Atividade de Receptores/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Biochemistry ; 57(8): 1410-1422, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29388762

RESUMO

The calcitonin receptor-like receptor (CLR) is a class B G protein-coupled receptor (GPCR) that forms the basis of three pharmacologically distinct receptors, the calcitonin gene-related peptide (CGRP) receptor, and two adrenomedullin (AM) receptors. These three receptors are created by CLR interacting with three receptor activity-modifying proteins (RAMPs). Class B GPCRs have an N-terminal extracellular domain (ECD) and transmembrane bundle that are both important for binding endogenous ligands. These two domains are joined together by a stretch of amino acids that is referred to as the "stalk". Studies of other class B GPCRs suggest that the stalk may act as hinge, allowing the ECD to adopt multiple conformations. It is unclear what the role of the stalk is within CLR and whether RAMPs can influence its function. Therefore, this study investigated the role of this region using an alanine scan. Effects of mutations were measured with all three RAMPs through cell surface expression, cAMP production and, in select cases, radioligand binding and total cell expression assays. Most mutants did not affect expression or cAMP signaling. CLR C127A, N140A, F142A, and L144A impaired cell surface expression with all three RAMPs. T125A decreased the potency of all peptides at all receptors. N128A, V135A, and L139A showed ligand-dependent effects. While the stalk appears to play a role in CLR function, the effect of RAMPs on this region seems limited, in contrast to their effects on the structure of CLR in other receptor regions.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Proteína Semelhante a Receptor de Calcitonina/análise , Proteína Semelhante a Receptor de Calcitonina/genética , Chlorocebus aethiops , Humanos , Domínios Proteicos , Receptores de Adrenomedulina/metabolismo
12.
Br J Pharmacol ; 175(1): 3-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059473

RESUMO

The calcitonin/CGRP family of peptides includes calcitonin, α and ß CGRP, amylin, adrenomedullin (AM) and adrenomedullin 2/intermedin (AM2/IMD). Their receptors consist of one of two GPCRs, the calcitonin receptor (CTR) or the calcitonin receptor-like receptor (CLR). Further diversity arises from heterodimerization of these GPCRs with one of three receptor activity-modifying proteins (RAMPs). This gives the CGRP receptor (CLR/RAMP1), the AM1 and AM2 receptors (CLR/RAMP2 or RAMP3) and the AMY1, AMY2 and AMY3 receptors (CTR/RAMPs1-3 complexes, respectively). Apart from the CGRP receptor, there are only peptide antagonists widely available for these receptors, and these have limited selectivity, thus defining the function of each receptor in vivo remains challenging. Further challenges arise from the probable co-expression of CTR with the CTR/RAMP complexes and species-dependent splice variants of the CTR (CT(a) and CT(b) ). Furthermore, the AMY1(a) receptor is activated equally well by both amylin and CGRP, and the preferred receptor for AM2/IMD has been unclear. However, there are clear therapeutic rationales for developing agents against the various receptors for these peptides. For example, many agents targeting the CGRP system are in clinical trials, and pramlintide, an amylin analogue, is an approved therapy for insulin-requiring diabetes. This review provides an update on the pharmacology of the calcitonin family of peptides by members of the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology and colleagues.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Calcitonina/metabolismo , Calcitonina/farmacologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Animais , Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptores da Calcitonina/química , Receptores da Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/química
13.
Biochem Pharmacol ; 142: 96-110, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28705698

RESUMO

Calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors are heteromers of the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor, and one of three receptor activity-modifying proteins (RAMPs). How CGRP and AM activate CLR and how this process is modulated by RAMPs is unclear. We have defined how CGRP and AM induce Gs-coupling in CLR-RAMP heteromers by measuring the effect of targeted mutagenesis in the CLR transmembrane domain on cAMP production, modeling the active state conformations of CGRP and AM receptors in complex with the Gs C-terminus and conducting molecular dynamics simulations in an explicitly hydrated lipidic bilayer. The largest effects on receptor signaling were seen with H295A5.40b, I298A5.43b, L302A5.47b, N305A5.50b, L345A6.49b and E348A6.52b, F349A6.53b and H374A7.47b (class B numbering in superscript). Many of these residues are likely to form part of a group in close proximity to the peptide binding site and link to a network of hydrophilic and hydrophobic residues, which undergo rearrangements to facilitate Gs binding. Residues closer to the extracellular loops displayed more pronounced RAMP or ligand-dependent effects. Mutation of H3747.47b to alanine increased AM potency 100-fold in the CGRP receptor. The molecular dynamics simulation showed that TM5 and TM6 pivoted around TM3. The data suggest that hydrophobic interactions are more important for CLR activation than other class B GPCRs, providing new insights into the mechanisms of activation of this class of receptor. Furthermore the data may aid in the understanding of how RAMPs modulate the signaling of other class B GPCRs.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo , Animais , Células COS , Peptídeo Relacionado com Gene de Calcitonina/química , Peptídeo Relacionado com Gene de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/química , Proteína Semelhante a Receptor de Calcitonina/genética , Chlorocebus aethiops , AMP Cíclico/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Ensaio Radioligante , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/genética , Receptores de Adrenomedulina/química , Receptores de Adrenomedulina/genética , Proteínas Recombinantes de Fusão , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA