Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 250: 118503, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367840

RESUMO

Existing fossil-based commercial products present a significant threat to the depletion of global natural resources and the conservation of the natural environment. Also, the ongoing generation of waste is giving rise to challenges in waste management. Conventional practices for the management of waste, for instance, incineration and landfilling, emit gases that contribute to global warming. Additionally, the need for energy is escalating rapidly due to the growing populace and industrialization. To address this escalating desire in a sustainable manner, access to clean and renewable sources of energy is imperative for long-term development of mankind. These interrelated challenges can be effectively tackled through the scientific application of biowaste-to-bioenergy technologies. The current article states an overview of the strategies and current status of these technologies, including anaerobic digestion, transesterification, photobiological hydrogen production, and alcoholic fermentation which are utilized to convert diverse biowastes such as agricultural and forest residues, animal waste, and municipal waste into bioenergy forms like bioelectricity, biodiesel, bio alcohol, and biogas. The successful implementation of these technologies requires the collaborative efforts of government, stakeholders, researchers, and scientists to enhance their practicability and widespread adoption.


Assuntos
Biocombustíveis , Gerenciamento de Resíduos/métodos , Conservação dos Recursos Naturais/métodos , Desenvolvimento Sustentável
2.
Nanotechnology ; 34(50)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37708885

RESUMO

The paper critically addresses two contemporary environmental challenges, the water crisis and the unrestricted discharge of organic pollutants in waterways together. An eco-friendly method was used to fabricate a cellulose/g-C3N4/TiO2photocatalytic composite that displayed a remarkable degradation of methylene blue dye and atenolol drug under natural sunlight. Introducing graphitic carbon nitride (g-C3N4) onto pristine TiO2improved hybrid material's photonic efficacy and enhanced interfacial charge separation. Furthermore, immobilizing TiO2/g-C3N4on a semi-interpenetrating cellulose matrix promoted photocatalyst recovery and its reuse, ensuring practical affordability. Under optimized conditions, the nano-photocatalyst exhibited ∼95% degradation of both contaminants within two hours while retaining ∼55% activity after ten cycles demonstrating a promising photostability. The nano-photocatalyst caused 66% and 57% reduction in COD and TOC values in industrial wastewater containing these pollutants. The photocatalysis was fitted to various models to elucidate the degradation kinetics, while LC-MS results suggested the mineralization pathway of dye majorly via ring opening demethylation. >98% disinfection was achieved againstE. coli(104-105CFU·ml-1) contaminated water. This study thus paves multifaceted strategies to treat wastewater contaminants at environmental levels employing nano-photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA