Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(5)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38785703

RESUMO

In this work, UiO-66-NH2/GO nanocomposite was prepared using a simple solvothermal technique, and its structure and morphology were characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). An enhanced electrochemical sensor for the detection of epirubicin (EP) was proposed, which utilized a UiO-66-NH2/GO nanocomposite-modified screen-printed graphite electrode (UiO-66-NH2/GO/SPGE). The prepared UiO-66-NH2/GO nanocomposite improved the electrochemical performance of the SPGE towards the redox reaction of EP. Under optimized experimental conditions, this sensor demonstrates a remarkable limit of detection (LOD) of 0.003 µM and a linear dynamic range from 0.008 to 200.0 µM, providing a highly capable platform for sensing EP. Furthermore, the simultaneous electro-catalytic oxidation of EP and topotecan (TP) was investigated at the UiO-66-NH2/GO/SPGE surface utilizing differential pulse voltammetry (DPV). DPV measurements revealed the presence of two distinct oxidation peaks of EP and TP, with a peak potential separation of 200 mV. Finally, the UiO-66-NH2/GO/SPGE sensor was successfully utilized for the quantitative analysis of EP and TP in pharmaceutical injection, yielding highly satisfactory results.


Assuntos
Antineoplásicos , Técnicas Eletroquímicas , Eletrodos , Epirubicina , Grafite , Nanocompostos , Topotecan , Epirubicina/análise , Topotecan/análise , Grafite/química , Antineoplásicos/análise , Técnicas Biossensoriais , Estruturas Metalorgânicas/química , Limite de Detecção , Humanos , Oxirredução , Ácidos Ftálicos
2.
Micromachines (Basel) ; 14(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37512744

RESUMO

Food colorants are important in food selection because they improve the gastronomic appeal of foods by improving their aesthetic appeal. However, after prolonged use, many colorants turn toxic and cause medical problems. A synthetic azo-class dye called carmoisine gives meals a red color. Therefore, the carmoisine determination in food samples is of great importance from the human health control. The current work was developed to synthesis ZnO hollow quasi-spheres (ZnO HQSs) to prepare a new electrochemical carmoisine sensor that is sensitive. Field emission-scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to analyze the properties of prepared ZnO HQSs. A screen-printed graphite electrode (SPGE) surface was modified with ZnO HQSs to prepare the ZnO HQSs-SPGE sensor. For carmoisine detection, the ZnO HQSs-SPGE demonstrated an appropriate response and notable electrocatalytic activities. The carmoisine electro-oxidation signal was significantly stronger on the ZnO HQSs-SPGE surface compared to the bare SPGE. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHA), and differential pulse voltammetry (DPV) have been utilized to investigate the suggested protocol. The DPV results revealed an extensive linear association between variable carmoisine concentrations and peak current that ranged from 0.08 to 190.0 µM, with a limit of detection (LOD) as narrow as 0.02 µM. The ZnO HQSs-SPGE's ability to detect carmoisine in real samples proved the sensor's practical application.

3.
ADMET DMPK ; 11(2): 293-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325111

RESUMO

In this paper, the electrochemical behavior of hydrochlorothiazide (HCTZ) is described using carbon paste electrodes modified with polypyrrole nanotubes (PPy-NTs/CPEs) at pH value 7. Experiments revealed that the presence of HCTZ greatly impacts the electrochemical behavior of modified CPEs. The synthesized PPy-NTs were utilized as a sensing material for the electrochemical detection of HCTZ and were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry. The key experiment conditions, including supporting electrolyte and electrolyte pH, were studied and optimized. Under optimized conditions, the prepared sensor displayed the linear relationships for the concentrations of HCTZ from 5.0 to 400.0 µM (R2 = 0.9984). The detection limit of the PPy-NTs/CPEs sensor was found to be 1.5 µM using the DPV method. The PPy-NTs is highly selective, stable and sensitive for the determination of HCT. Therefore, we believe the newly prepared PPy-NTs material can be useful for different electrochemical applications.

4.
Biosensors (Basel) ; 13(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37232874

RESUMO

In this work, we prepared a novel electrochemical sensor for the detection of tramadol based on a UiO-66-NH2 metal-organic framework (UiO-66-NH2 MOF)/third-generation poly(amidoamine) dendrimer (G3-PAMAM dendrimer) nanocomposite drop-cast onto a glassy carbon electrode (GCE) surface. After the synthesis of the nanocomposite, the functionalization of the UiO-66-NH2 MOF by G3-PAMAM was confirmed by various techniques including X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR) spectroscopy. The UiO-66-NH2 MOF/PAMAM-modified GCE exhibited commendable electrocatalytic performance toward the tramadol oxidation owing to the integration of the UiO-66-NH2 MOF with the PAMAM dendrimer. According to differential pulse voltammetry (DPV), it was possible to detect tramadol under optimized circumstances in a broad concentration range (0.5 µM-500.0 µM) and a narrow limit of detection (0.2 µM). In addition, the stability, repeatability, and reproducibility of the presented UiO-66-NH2 MOF/PAMAM/GCE sensor were also studied. The sensor also possessed an acceptable catalytic behavior for the tramadol determination in the co-existence of acetaminophen, with the separated oxidation potential of ΔE = 410 mV. Finally, the UiO-66-NH2 MOF/PAMAM-modified GCE exhibited satisfactory practical ability in pharmaceutical formulations (tramadol tablets and acetaminophen tablets).


Assuntos
Dendrímeros , Grafite , Nanocompostos , Tramadol , Acetaminofen , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Composição de Medicamentos , Grafite/química , Nanocompostos/química , Carbono/química , Comprimidos , Técnicas Eletroquímicas/métodos
5.
Diagnostics (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36832120

RESUMO

In this paper, a simple strategy was proposed for the analysis of catechol by a carbon paste electrode (CPE) modified with graphene oxide-third generation of poly(amidoamine) dendrimer (GO/G3-PAMAM) nanocomposite and ionic liquid (IL). The synthesis of GO-PAMAM nanocomposite was confirmed using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FT-IR) techniques. The prepared modified electrode (GO-PAMAM/ILCPE) exhibited good performance to detect catechol with a notable decrease in overpotential and increase in current compared with an unmodified CPE. Under optimum experimental conditions, GO-PAMAM/ILCPE electrochemical sensors indicated a lower limit of detection (LOD) of 0.034 µM and a linear response in the concentration range of 0.1 to 200.0 µM for the quantitative measurement of catechol in aqueous solutions. In addition, GO-PAMAM/ILCPE sensor exhibited an ability to simultaneously determine catechol and resorcinol. It can be found that catechol and resorcinol could be completely separated on the GO-PAMAM/ILCPE with the differential pulse voltammetry (DPV) technique. Finally, a GO-PAMAM/ILCPE sensor was utilized to detect catechol and resorcinol in water samples with recoveries of 96.2% to 103.3% and relative standard deviations (RSDs) of less than 1.7%.

6.
Biosensors (Basel) ; 12(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36354421

RESUMO

The current work was performed to construct a novel electrochemical sensing system for determination of sunset yellow via the modification of screen-printed graphite electrode modified with hierarchical flower-like NiCo2O4 nanoplates (NiCo2O4/SPGE). The prepared material (hierarchical flower-like NiCo2O4 nanoplates) was analyzed by diverse microscopic and spectroscopic approaches for the crystallinity, composition, and morphology. Chronoamperometry, differential pulse voltammetry, linear sweep voltammetry, and cyclic voltammetry were used for determination of the electrochemical behavior of sunset yellow. The as-fabricated sensor had appreciable electro-catalytic performance and current sensitivity in detecting the sunset yellow. There were some advantages for NiCo2O4/SPGE under the optimized circumstances of sunset yellow determination, including a broad dynamic linear between 0.02 and 145.0 µM, high sensitivity of 0.67 µA/(µM.cm2), and a narrow limit of detection of 0.008 µM. The practical applicability of the proposed sensor was verified by determining the sunset yellow in real matrices, with satisfactory recoveries.


Assuntos
Técnicas Eletroquímicas , Grafite , Técnicas Eletroquímicas/métodos , Compostos Azo , Grafite/química , Eletrodos
7.
Biosens Bioelectron ; 216: 114674, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36095980

RESUMO

Recent advances in nanotechnology have introduced transition-metal dichalcogenides (TMDs) as inorganic nanomaterials with exceptional properties and structures, suitable also for catalytic applications. The admirable properties of TMDs include the impressive capability of charge transfer, the large surface to volume ratio (S/V), the energy band gap controllable by the number of layers, the strong interaction with light and the mechanical robustness. They are also cost-effective and highly accessible. The unique features and morphology make TMDs excellent candidates for the fabrication of electrochemical sensing devices. This review article was designed to scrutinize the existing applications of nanostructures TMDs to fabricate electrochemical (bio) sensors. The first part focuses on the production techniques and structural properties of TMD nanostructures. The second part examines the progress made for different TMD bio (sensing) schemes and applications in safety of foodstuff, monitoring of environmental contaminations, analysis of pharmacological preparations and clinical determinations. The last part discusses reported challenges and suggestions on promising opportunities.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Elementos de Transição , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Elementos de Transição/química
8.
Environ Res ; 214(Pt 1): 113725, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732202

RESUMO

Azo dyes are the most used type of dye in the textile industry. Some of these dyes have the potential to be extremely toxic to both human health and the environment. The purpose of this study was to develope an electrochemical sensor for detection of amaranth. The electrochemical sensor based on the modification of a screen-printed electrode via polypyrrole nanotubes (PPy NTs/SPE) for detection of amaranth was developed. The preparation of PPy NTs was performed through the pyrrole monomer oxidation with iron (III) chloride in exposure to methyl orange as structure-guiding agent. Findings exhibited an excellent electrocatalytic activity of as-fabricated sensor for amaranth detection. Our sensor under the optimized circumstances also had a broad linear dynamic range (between 0.03 µM and 290.0 µM) and a narrow limit of detection (0.01 µM) towards the amaranth detection. Moreover, the proposed sensor could practically and successfully determine the amaranth content present in the real food specimens, with acceptable recovery rates.


Assuntos
Nanotubos de Carbono , Polímeros , Eletrodos , Humanos , Pirróis
9.
Food Chem Toxicol ; 166: 113243, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728724

RESUMO

The current work introduced a novel electrochemical sensor (screen-printed graphite electrode (SPGE) modified with MnO2 nanorods anchored graphene oxide nanocomposite (MnO2 NRs/GO) for sensitive determination of sunset yellow. The characterization of MnO2 NRs/GO nanocomposite synthesized through a simple hydrothermal approach was determined employing varied analytical equipment like Field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). Chronoamperometric measurements, differential pulse voltammetry (DPV), cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were recruited to recognize the electrochemical oxidation of sunset yellow on the MnO2 NRs/GO/SPGE. The results of CV proved that the as-synthesized MnO2 NRs/GO nanocomposite has a good electrocatalytic activity toward sunset yellow. The MnO2 NRs/GO/SPGE electrode under optimized conditions using the DPV possessed a linear response for different concentrations of sunset yellow (between 0.01 and 115.0 µM) with a low limit of detection (LOD) (0.008 µM). Finally, the impressive applicability of this sensor was confirmed via real sample analysis with excellent recoveries (between 97.3 and 104.6%).


Assuntos
Grafite , Compostos Azo , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Compostos de Manganês/química , Óxidos/química , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Food Chem Toxicol ; 162: 112864, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35157927

RESUMO

This study was performed to investigate the simultaneous detection of carmoisine and tartrazine, two food azo dyes, with a new voltammetric sensor based on graphene oxide-Fe3O4 (GO-Fe3O4) nanocomposite functionalized with fourth-generation poly(amidoamine) (G4 PAMAM) dendrimers (GO-Fe3O4-G4 PAMAM) and ionic liquid (IL) modified carbon paste electrode (GO-Fe3O4-G4 PAMAM/ILCPE). The GO-Fe3O4-G4 PAMAM was synthesized and characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), vibrating-sample magnetometer (VSM), and fourier transform infrared (FT-IR) techniques. Cyclic voltammetry (CV) was used to evaluate the electrochemical behavior of carmoisine, revealing the good electrocatalytic function of GO-Fe3O4-G4 PAMAM/ILCPE. Linear response from 0.1 to 170.0 µM was obtained based on carmoisine electrochemical oxidation through differential pulse voltammetry (DPV). The limit of detection (LOD) value obtained was 0.02 µM. Also, the GO-Fe3O4-G4 PAMAM/ILCPE was used for the simultaneous determination of carmoisine and tartrazine. In co-existence system containing carmoisine and tartrazine, the developed sensor exhibited well-defined and separate DPV peaks (i.e., 770 mV) for carmoisine and tartrazine. Besides, repeatability, reproducibility and stability studies were performed. Additionally, the analytical application of this sensor was demonstrated by determination of carmoisine and tartrazine in food samples including lemon juice and powdered juice.

11.
Sci Rep ; 11(1): 24068, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34912041

RESUMO

A novel electrochemical sensing platform was designed and prepared for the simultaneous detection of sumatriptan and naproxen by exploiting the prowess of the Fe3O4@ZIF-8 nanoparticles (NPs); as-synthesized Fe3O4@ZIF-8 NPs were characterized by energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FESEM), transmission electron microscopy and thermal gravimetric analysis. The immobilized Fe3O4@ZIF-8 NPs on a screen printed graphite electrode (SPGE) was evaluated electrochemically via cyclic voltammetry, linear sweep voltammetry, and differential pulse voltammetry as well as chronoamprometery means; Fe3O4@ZIF-8/SPGE exhibited good sensing performance for sumatriptan in a range of 0.035-475.0 µM with detection limit of 0.012 µM. Also, Fe3O4@ZIF-8/SPGE exhibited good sensing performance for naproxen in a range of 0.1-700.0 µM with detection limit of 0.03 µM. The modified electrode showed two separate oxidative peaks at 620 mV for sumatriptan and at 830 mV for naproxen with a peak potential separation of 210 mV which was large enough to detect the two drugs simultaneously besides being stable in the long-run with considerable reproducibility. Real sample analyses were carried out to identify the function of fabricated electrode in sensing applications wherein trace amounts of sumatriptan and naproxen could be identified in these samples.

12.
Talanta ; 228: 122075, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773704

RESUMO

It is widely accepted that nanotechnology attracted more interest because of various values that nanomaterial applications offers in different fields. Recently, researchers have proposed nanomaterials based electrochemical sensors and biosensors as one of the potent alternatives or supplementary analytical tools to the conventional detection procedures that consumes a lot of time. Among different nanomaterials, researchers largely considered magnetic nanomaterials (MNMs) for developing and fabricating the electrochemical (bio)sensors for numerous utilizations. Among several factors, healthier and higher quality foods are the most important preferences of consumers and manufacturers. For this reason, developing new techniques for rapid, precise as well as sensitive determination of components or contaminants of foods is very important. Therefore, developing the new electrochemical (bio)sensors in food analysis is one of the key and effervescent research fields. In this review, firstly, we presented the properties and synthesis strategies of MNMs. Then, we summarized some of the recently developed MNMs-based electrochemical (bio)sensors for food analysis including detecting the antioxidants, synthetic food colorants, pesticides, heavy metal ions, antibiotics and other analytes (bisphenol A, nitrite and aflatoxins) from 2010 to 2020. Finally, the present review described advantages, challenges as well as future directions in this field.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Eletroquímicas , Análise de Alimentos , Fenômenos Magnéticos
13.
Ind Eng Chem Res ; 60(3): 1112-1136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35340740

RESUMO

The human population is generally subjected to diverse pollutants and contaminants in the environment like those in the air, soil, foodstuffs, and drinking water. Therefore, the development of novel purification techniques and efficient detection devices for pollutants is an important challenge. To date, experts in the field have designed distinctive analytical procedures for the detection of pollutants including gas chromatography/mass spectrometry and atomic absorption spectroscopy. While the mentioned procedures enjoy high sensitivity, they suffer from being laborious, expensive, require advanced skills for operation, and are inconvenient to deploy as a result of their massive size. Therefore, in response to the above-mentioned limitations, electrochemical sensors are being developed that enjoy robustness, selectivity, sensitivity, and real-time measurements. Considerable advancements in nanomaterials-based electrochemical sensor platforms have helped to generate new technologies to ensure environmental and human safety. Recently, investigators have expanded considerable effort to utilize polymer nanocomposites for building the electrochemical sensors in view of their promising features such as very good electrocatalytic activities, higher electrical conductivity, and effective surface area in comparison to the traditional polymers. Herein, the first section of this review briefly discusses the most important methods for polymer nanocomposites synthesis, such as in situ polymerization, direct mixing of polymer and nanofillers (melt-mixing and solution-mixing), sol-gel, and electrochemical methods. It then summarizes the current utilization of polymer nanocomposites for the preparation of electrochemical sensors as a novel approach for monitoring and detecting environmental pollutants which include heavy metal ions, pesticides, phenolic compounds, nitroaromatic compounds, nitrite, and hydrazine in different mediums. Finally, the current challenges and future directions for the polymer nanocomposites-based electrochemical sensing of environmental pollutants are outlined.

14.
J Mater Chem B ; 8(27): 5826-5844, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32542277

RESUMO

Nanostructured metal oxides, such as zinc oxide (ZnO), are considered as excellent materials for the fabrication of highly sensitive and selective electrochemical sensors and biosensors due to their good properties, including a high specific surface area, high catalytic efficiency, strong adsorption ability, high isoelectric point (IEP, 9.5), wide band gap (3.2 eV), biocompatibility and high electron communication features. Thus, ZnO nanostructures are widely used to fabricate efficient electrochemical sensors and biosensors for the detection of various analytes. In this review, we have discussed the synthesis of ZnO nanostructures and the advances in various ZnO nanostructure-based electrochemical sensors and biosensors for medical diagnosis, pharmaceutical analysis, food safety, and environmental pollution monitoring.


Assuntos
Nanoestruturas/química , Óxido de Zinco/química , Animais , Técnicas Biossensoriais , Técnicas Eletroquímicas , Monitoramento Ambiental , Inocuidade dos Alimentos , Humanos
15.
Iran J Pharm Res ; 18(1): 80-90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089346

RESUMO

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared with bare SPE the GO/Fe3O4@SiO2/SPE exhibited excellent electrocatalytic activity toward the oxidation of acetaminophen. The plot of catalytic current versus acetaminophen concentration showed a linear segment in the concentration range 0.5 to 100.0 µM. The detection limit of 0.1 µM was obtained using calibration plot. Also the anodic peaks of acetaminophen and tryptophan in their mixture can be well separated. The GO/Fe3O4@SiO2/SPE has been successfully applied and validated by analyzing acetaminophen and tryptophan in urine and pharmaceutical samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA