Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(7): 2686-2692, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34693528

RESUMO

BACKGROUND: Ice plant is a halophyte, known for its antioxidant activity and for being a highly functional food. It is capable of increasing its contents of health-promoting compounds when subjected to certain stresses such as salinity. The objective of this work was to determine the plant's best growing conditions to achieve both an optimal production of bioactive metabolites and high crop yield. Mesembryanthemum crystallinum were grown under semi-controlled conditions and four saline treatments were applied at: 0, 100, 200 and 300 mmol L-1 sodium chloride (NaCl), respectively. RESULTS: The 100 mmol L-1 NaCl treatment induced a slight increase in shoot dry weight (DW) and enhanced the leaf area. At higher salinity levels, however, the shoot biomass decreased. The concentration of starch and total proteins declined as the concentration of salt increased, while the total soluble sugars (TSS) content was lower in 100 and 300 mmol L-1 NaCl treatments. Proline increased in conditions over 100 mmol L-1 NaCl. Furthermore, plants grown with 300 mmol L-1 of NaCl presented the highest values of glutathione, ascorbic acid and vitamin C. Antioxidant enzymes activity and total phenolics increased with the severity of the salinity. CONCLUSION: Ice plant accumulates high levels of health-promoting compounds when grown with 300 mmol L-1 NaCl. A high concentration of beneficial compounds, however, is detrimental to the plant's growth. Moreover, 100 mmol L-1 NaCl treatment not only improved the concentration of bioactive and antioxidant compounds but also preserved the crop yield. It could thus be interesting to promote the cultivation of this high nutritional value plant in environments of moderate salinity. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Mesembryanthemum , Antioxidantes/análise , Ácido Ascórbico/metabolismo , Mesembryanthemum/metabolismo , Folhas de Planta/química , Plantas Comestíveis/metabolismo , Salinidade , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio/metabolismo
2.
J Sci Food Agric ; 102(10): 3964-3971, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952971

RESUMO

BACKGROUND: Elevated CO2 usually reduces levels of proteins and essential micronutrients in crops. The adoption of early maturing varieties may minimize the deleterious effect of climate change on farming activities. Legumes stand out for their high nutritional quality, so the objective was to study whether the atmospheric CO2 concentration affected the growth, yield, and food quality of early maturing cultivars of peas, snap beans, and faba beans. Plants grew in greenhouses either at ambient (ACO2 , 392 µmol mol-1 ) or under elevated (ECO2 , 700 µmol mol-1 ) CO2 levels. Minerals, proteins, sugars, and phenolic compounds were measured in grains of peas and faba beans, and in pods of snap beans. RESULTS: The effect of ECO2 depended on legume species, being more evident for food quality than for vegetative growth and yield. The ECO2 increased Fe and P in faba bean grains, and Ca in snap bean pods. Under ECO2 , grains of pea and faba bean increased levels of proteins and phenolics, respectively, and the sugars-to-protein ratio decreased in pods of snap beans. CONCLUSION: Early maturing varieties of legumes appear to be an interesting tool to cope with the negative effects that a long exposure to rising CO2 can exert on food quality. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Fabaceae , Vicia faba , Animais , Dióxido de Carbono/metabolismo , Fabaceae/metabolismo , Frutas/metabolismo , Estágios do Ciclo de Vida , Pisum sativum/metabolismo , Açúcares , Verduras/metabolismo , Vicia faba/química
3.
Plant Physiol Biochem ; 130: 542-554, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30098586

RESUMO

Tempranillo grapevine is widely cultivated in Spain and other countries over the world (Portugal, USA, France, Australia, and Argentina, among others) for its wine, but leaves are scarcely used for human or animal nutrition. Since high temperatures affect quality of fruits and leaves in grapevine and the association of Tempranillo with arbuscular mycorrhizal fungi (AMF) enhances the antioxidant properties of berries and leaves, we assessed the effect of elevated air temperature and mycorrhization, separately or combined, on the nutritional properties of Tempranillo leaves at the time of fruit harvest. Experimental assay included three clones (CL-260, CL-1048, and CL-1089) and two temperature regimes (24/14 °C or 28/18 °C day/night) during fruit ripening. Within each clone and temperature regime there were plants not inoculated or inoculated with AMF. The nutritional value of leaves increased under warming climate: elevated temperatures induced the accumulation of minerals, especially in CL-1089; antioxidant capacity and soluble sugars also increased in CL-1089; CL-260 showed enhanced amounts of pigments, and chlorophylls and soluble proteins increased in CL-1048. Results suggested the possibility of collecting leaves together with fruit harvest with different applications of every clone: those from CL-1089 would be adequate for an energetic diet and leaves from CL-260 and CL-1048 would be suitable for culinary processes. Mycorrhization improved the nutritional value of leaves by enhancing flavonols in all clones, hydroxycinnamic acids in CL-1089 and carotenoids in CL-260.


Assuntos
Micorrizas/metabolismo , Valor Nutritivo , Folhas de Planta/metabolismo , Simbiose , Vitis/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Ácidos Cumáricos/metabolismo , Flavonóis/metabolismo , Fluorometria , Fenóis/metabolismo , Folhas de Planta/genética , Temperatura , Vitis/genética , Vitis/microbiologia
4.
J Agric Food Chem ; 59(10): 5504-15, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21504187

RESUMO

Lettuce can be associated with arbuscular mycorrhizal fungi (AMF). This symbiosis involves a molecular dialogue between fungus and plant that includes the activation of antioxidant, phenylpropanoid, or carotenoid pathways. The objective of this study was to test if the association of lettuce with AMF benefited plant growth and increased the contents of compounds potentially beneficial for human health. Results showed that AMF improved growth of lettuce, thus producing a dilution effect on the concentrations of some mineral nutrients (e.g., Ca and Mn). However, Cu, Fe, anthocyanins, carotenoids, and, to a lesser extent, phenolics appeared in higher concentrations (on a wet basis) in mycorrhizal than in nonmycorrhizal plants.


Assuntos
Lactuca/crescimento & desenvolvimento , Lactuca/microbiologia , Micorrizas/fisiologia , Valor Nutritivo , Antocianinas/análise , Carotenoides/análise , Proteínas Alimentares/análise , Lactuca/química , Minerais/análise , Fenóis/análise , Simbiose
5.
Mycorrhiza ; 15(5): 345-56, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16001290

RESUMO

Previous studies have shown that the arbuscular mycorrhizal fungus (AMF) Glomus deserticola (Trappe, Bloss and Menge) can diminish the negative effect of Verticillium dahliae Kleb. on pepper yield. On the other hand, it is known that AMF can be more beneficial for plant growth and physiology under dry conditions than when soil moisture is plentiful. Therefore, our objective was to assess if a moderate water deficit imposed on pepper plants before their inoculation with V. dahliae could improve the effectiveness of G. deserticola as biocontrol agent. In the present experiment, the delay in disease development in Verticillium-inoculated plants associated with AMF did not occur under well watered conditions. In addition, the establishment of mycorrhizal symbiosis and the development of structures by AMF were delayed when both symbiotic and pathogenic fungi infected the same root. Therefore, it is suggested that the equilibrium between pepper plant, G. deserticola and V. dahliae is so complex that small changes in competition between symbiotic and pathogenic fungi for host resources can modify the efficiency of AMF as a biocontrol agent. On the other hand, water deficit enhanced the deleterious effect of V. dahliae on fruit set and yield only when pepper plants were not associated with G. deserticola, which reinforces the idea that AMF may be more important for host plants subjected to stressful conditions. However, comparing well watered non-mycorrhizal and predroughted mycorrhizal plants, we found that moderate water deficit imposed before inoculation with V. dahliae did not improve the effectiveness of G. deserticola as a biocontrol agent.


Assuntos
Capsicum/microbiologia , Desastres , Fungos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Controle Biológico de Vetores , Verticillium/crescimento & desenvolvimento , Antibiose , Capsicum/crescimento & desenvolvimento , Capsicum/fisiologia , Micorrizas/fisiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Verticillium/patogenicidade , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA