Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aquat Toxicol ; 271: 106935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723468

RESUMO

Blood lipid-lowering agents, such as Pravastatin, are among the most frequently used pharmaceuticals released into the aquatic environment. Although their effects on humans are very well understood, their consequences on freshwater organisms are not well known, especially in chronic exposure conditions. Gammarus fossarum is commonly used as sentinel species in ecotoxicology because of its sensitivity to a wide range of environmental contaminants and the availability of standardized bioassays. Moreover, there is an increased interest in linking molecular changes in sentinel species, such as gammarids, to observed toxic effects. Here, we performed a reproductive toxicity assay on females exposed to different concentrations of pravastatin (30; 300; 3,000 and 30,000 ng L-1) during two successive reproductive cycles and we applied ToF-SIMS imaging to evaluate the effect of pravastatin on lipid homeostasis in gammarids. Reproductive bioassay showed that pravastatin could affect oocyte development in Gammarus fossarum inducing embryotoxicity in the second reproductive cycle. Mass spectrometry imaging highlighted the disruption in vitamin E production in the oocytes of exposed female gammarids at the second reproductive cycle, while limited alterations were observed in other lipid classes, regarding both production and tissue distribution. The results demonstrated the interest of applying spatially resolved lipidomics by mass spectrometry imaging to assess the molecular effects induced by long-term exposure to environmental pharmaceutical residues in sentinel species.


Assuntos
Anfípodes , Pravastatina , Reprodução , Poluentes Químicos da Água , Animais , Pravastatina/toxicidade , Poluentes Químicos da Água/toxicidade , Feminino , Anfípodes/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Espectrometria de Massa de Íon Secundário , Oócitos/efeitos dos fármacos , Vitamina E
2.
Sci Total Environ ; 903: 166216, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567286

RESUMO

Considering long-term population effects of chronic exposure to contaminants remains limited in ecological risk assessment. Field evidence that multigenerational exposure influences organisms' sensitivity is still scarce, and mechanisms have yet to be elucidated in the environmental context. This study focuses on the crustacean Gammarus fossarum, for which an increased tolerance to cadmium (Cd) has previously been reported in a naturally low-contaminated headwater stream. Our objectives were to investigate whether Cd tolerance is a common phenomenon in headwater populations, and to elucidate the nature of the tolerance and its intergenerational transmission. For this, we carried out an in-depth in situ characterization of Cd exposure (gammarids' caging) and levels of tolerance in nine populations on a regional scale, as well as laboratory maintenance and cross-breeding of contaminated and uncontaminated populations. Acute tolerance levels correlate positively with bioavailable Cd contamination levels among streams. The contaminated and non-contaminated populations differ about two-fold in sensitivity to Cd. Tolerance was found in all age classes of contaminated populations, it can be transiently lost during the year, and it was transmissible to offspring. In addition, tolerance levels dropped significantly when organisms were transferred to a Cd-free environment for two months. These organisms also ceased producing tolerant offspring, confirming a non-genetic transmission of Cd tolerance between generations. These findings support that Cd tolerance corresponds to non-genetic acclimation combined with transgenerational plasticity. Moreover, cross-breeding revealed that tolerance transmission to offspring is not limited to maternal effect. We suggest epigenetics as a plausible mechanism for the plasticity of Cd sensitivity observed in the field. Our results therefore highlight the neglected role of plasticity and non-genetic transmission of modified sensitivities during the long-term exposure of natural populations to environmental contamination.

3.
Environ Int ; 171: 107673, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580734

RESUMO

Information on the relationship between the exposure concentrations of metals and their biodistribution among organs remained scarce in invertebrates. The objective of this study was to investigate the effects of Cd concentration on the organotropism, toxico-kinetic and fate of this metal in different organs of gammarids exposed to dissolved radioisotope 109Cd. Gammarids male were exposed for 7 days to three environmental Cd concentrations (i.e. 4, 52 and 350 ng.L-1) before being placed in depuration conditions (i.e. uncontaminated water). At several sampling times, Cd concentrations were determined by 109Cd γ-counting in water, caeca, cephalon, gills, intestine and remaining tissues. Bioconcentration Factors (BCF) and Cd relative proportions in organs were calculated to assess the exposure concentration effect on the bioaccumulation capacities. The dependance of the organ-specific kinetic parameters to Cd water concentrations were estimated by fitting nested one-compartment toxico-kinetic (TK) models to both the accumulation and depuration data, by Bayesian inference. Then, for each Cd concentrations, the metal exchanges among organs over time were formalized by a multi-compartments TK model fitted to all organ data simultaneously. Our results highlighted that, at the end of the exposure phase, BCF and Cd relative proportions, in each organ, were not significantly modulated by water concentrations. Kinetically, Cd accumulation rates in all organs (except intestines) were depended on the exposure concentration, but not the elimination rates. The in vivo management of Cd (i.e. metal exchanges among organs) remained qualitatively unchanged according to exposure concentration. All these results also highlighted key role of that organs in the management of Cd: bioconcentration by caeca, storage by gills and main entry pathway by intestine. This study shows the interest of implementing TK approaches to test the effect of environmental factors on bioaccumulation, inter-organ exchanges and fate of contaminants in invertebrate body to enhance the understanding of the toxicity risk.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Masculino , Cádmio/análise , Toxicocinética , Teorema de Bayes , Distribuição Tecidual , Metais/metabolismo , Anfípodes/metabolismo , Água , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 308: 119625, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714792

RESUMO

One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to 109Cd- or 65Zn-radiolabeled water at a concentration of 52.1 and 416 ng.L-1 (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and 109Cd or 65Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7th day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Teorema de Bayes , Cádmio/análise , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zinco/análise
5.
Sci Total Environ ; 808: 152148, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34864038

RESUMO

A biomonitoring approach based on a single model species cannot be representative of the contaminations impacts on the ecosystem overall. As part of the Interreg DIADeM program ("Development of an integrated approach for the diagnosis of the water quality of the River Meuse"), a study was conducted to establish the proof of concept that the use of a multispecies active biomonitoring approach improves diagnostic of aquatic systems. The complementarity of the biomarker responses was tested in four model species belonging to various ecological compartments: the bryophyte Fontinalis antipyretica, the bivalve Dreissena polymorpha, the amphipod Gammarus fossarum and the fish Gasterosteus aculeatus. The species have been caged upstream and downstream from five wastewater treatment plants (WWTPs) in the Meuse watershed. After the exposure, a battery of biomarkers was measured and results were compiled in an Integrated Biomarker Response (IBR) for each species. A multispecies IBR value was then proposed to assess the quality of the receiving environment upstream the WWTPs. The effluent toxicity was variable according to the caged species and the WWTP. However, the calculated IBR were high for all species and upstream sites, suggesting that the water quality was already downgraded upstream the WWTP. This contamination of the receiving environment was confirmed by the multispecies IBR which has allowed to rank the rivers from the less to the most contaminated. This study has demonstrated the interest of the IBR in the assessment of biological impacts of a point-source contamination (WWTP effluent) but also of the receiving environment, thanks to the use of independent references. Moreover, this study has highlighted the complementarity between the different species and has emphasized the interest of this multispecies approach to consider the variability of the species exposition pathway and sensibility as well as the mechanism of contaminants toxicity in the final diagnosis.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Monitoramento Biológico , Ecossistema , Rios , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Environ Int ; 156: 106625, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34010754

RESUMO

The use of freshwater invertebrates for biomonitoring has been increasing for several decades, but little is known about relations between external exposure concentration of metals and their biodistribution among different tissues. One and multi-compartments toxicokinetic (TK) models are powerful tools to formalize and predict how a contaminant is bioaccumulated. The aim of this study is to develop modeling approaches to improve knowledge on dynamic of accumulation and fate of Cd and Hg in gammarid's organs. Gammarids were exposed to dissolved metals (11.1 ± 1.2 µg.L-1 of Cd or 0.27 ± 0.13 µg.L-1 of Hg) before a depuration phase. At each sampling days, their organs (caeca, cephalon, intestine and remaining tissues) were separated by dissection before analyses. Results allowed us to determine that i) G.fossarum takes up Cd as efficiently as the mussel M.galloprovincialis, but eliminates it more rapidly, ii) organs which accumulate and depurate the most, in terms of concentrations, are caeca and intestine for both metals; iii) the one-compartment TK models is the most relevant for Hg, while the multi-compartments TK model allows a better fit to Cd data, demonstrating dynamic transfer of Cd among organs.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Água Doce , Metais/toxicidade , Distribuição Tecidual , Poluentes Químicos da Água/toxicidade
7.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630258

RESUMO

We explore the delayed consequences of parental exposure to environmentally relevant cadmium concentrations on the life-history traits throughout generations of the freshwater crustacean Gammarus fossarum. We report the preliminary results obtained during a challenging one-year laboratory experiment in this environmental species and propose the use of population modeling to interpret the changes in offspring life-history traits regarding their potential demographic impacts. The main outcome of this first long-term transgenerational assay is that the exposure of spawners during a single gametogenesis cycle (3 weeks) could result in severe cascading effects on the life-history traits along three unexposed offspring generations (one year). Indeed, we observed a decrease in F1 reproductive success, an early onset of F2 offspring puberty with reduced investment in egg yolk reserves, and finally a decrease in the growth rate of F3 juveniles. However, the analysis of these major transgenerational effects by means of a Lefkovitch matrix population model revealed only weak demographic impacts. Population compensatory processes mitigating the demographic consequences of parental exposure seem to drive the modification of life-history traits in offspring generations. This exploratory study sheds light on the role of population mechanisms involved in the demographic regulation of the delayed effects of environmental toxicity in wild populations.


Assuntos
Anfípodes/efeitos dos fármacos , Cádmio/efeitos adversos , Cádmio/toxicidade , Anfípodes/genética , Anfípodes/fisiologia , Animais , Monitoramento Ambiental/métodos , Poluição Ambiental/efeitos adversos , Dinâmica Populacional , Reprodução/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA