Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Prod Res ; : 1-15, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661754

RESUMO

Fungi have a unique metabolic plasticity allowing them to produce a wide range of natural products. Since the discovery of penicillin, an antibiotic of fungal origin, substantial efforts have been devoted globally to search for fungal-derived natural bioactive products. Andean region forests represent one of the few undisturbed ecosystems in the world with little human intervention. While these forests display a rich biological diversity, mycological and chemical studies in these environments have been scarce. This review aims to summarise all the efforts regarding the chemical or bioactivity analyses of Agaricomycetes (Basidiomycota) from southern South America environments. Overall, herein we report a total of 147 fungal species, 21 of them showing chemical characterisation and/or biological activity. In terms of chemical cores, furans, chlorinated phenol derivatives, polyenes, lactones, terpenes and himanimides have been reported. These natural products displayed a range of biological activities including antioxidant, antimicrobial, antifungal, neuroprotective and osteoclast-forming suppressing effects.

2.
PLoS One ; 18(8): e0290398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616236

RESUMO

Native Andean-Patagonian Nothofagus forests harbour a unique diversity of microorganisms with diverse ecological roles. Although ectomycorrhizal associations constitute an important fragment of the biota associated with these forests, the factors affecting such communities are largely unknown. We investigated the biodiversity, relative abundance, and composition of ectomycorrhizal fungal communities in relation to two host tree species and ages and the soil properties in six monospecific and mixed evergreen-deciduous Nothofagus forests. We used the internal transcribed spacer (ITS2) region by sequencing 9,600 ectomycorrhizae (ECM) root tips for the identification of fungi. In total, 1,125 fungal taxa at the genus level distributed over 131 orders were identified. The phyla Ascomycota (34.5%) and Basidiomycota (62.1%) were the most abundant, whereas Mucoromycota (3.1%), Chytridiomycota, Cryptomycota, Olpidiomycota, and Zoopagomycota occurred less frequently. The highest taxon diversity was found in old trees, whereas young trees often exhibited a lower diversity of the associated fungi. The fungal taxa were grouped into seven broad ecological categories, of which saprotrophic associations were most common, followed by pathotrophic, pathotrophic-saprotrophic-symbiotrophic, pathotrophic-saprotrophic, and symbiotrophic associations. We did not detect significant differences in the number of taxa in each category between young and old N. dombeyi and N. obliqua. Overall, the scale of the Illumina sequencing approach allowed us to detect a fungal taxa diversity that would not be possible to find through surveys of fruiting bodies alone and that have never been observed in Nothofagus forests before. Our findings suggest the impact of the proximity between sites, the similarity of the soil conditions, and anthropogenic use of the forests on the belowground fungal community's diversity and composition. Furthermore, there were differences between above- and belowground occurrences of the edible mushrooms B. loyo and Ramaria spp. However, future research, including on EMC tips found beneath fairy rings could provide significantly better correlations with the occurrence of aboveground fruiting body.


Assuntos
Agaricales , Micorrizas , Florestas , Árvores , Biodiversidade , Fagales
3.
PeerJ ; 10: e14047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36217381

RESUMO

Bistorta vivipara is a widespread herbaceous perennial plant with a discontinuous pattern of distribution in arctic, alpine, subalpine and boreal habitats across the northern Hemisphere. Studies of the fungi associated with the roots of B. vivipara have mainly been conducted in arctic and alpine ecosystems. This study examined the fungal diversity and specificity from root tips of B. vivipara in two local mountain ecosystems as well as on a global scale. Sequences were generated by Sanger sequencing of the internal transcribed spacer (ITS) region followed by an analysis of accurately annotated nuclear segments including ITS1-5.8S-ITS2 sequences available from public databases. In total, 181 different UNITE species hypotheses (SHs) were detected to be fungi associated with B. vivipara, 73 of which occurred in the Bavarian Alps and nine in the Swabian Alps-with one SH shared among both mountains. In both sites as well as in additional public data, individuals of B. vivipara were found to contain phylogenetically diverse fungi, with the Basidiomycota, represented by the Thelephorales and Sebacinales, being the most dominant. A comparative analysis of the diversity of the Sebacinales associated with B. vivipara and other co-occurring plant genera showed that the highest number of sebacinoid SHs were associated with Quercus and Pinus, followed by Bistorta. A comparison of B. vivipara with plant families such as Ericaceae, Fagaceae, Orchidaceae, and Pinaceae showed a clear trend: Only a few species were specific to B. vivipara and a large number of SHs were shared with other co-occurring non-B. vivipara plant species. In Sebacinales, the majority of SHs associated with B. vivipara belonged to the ectomycorrhiza (ECM)-forming Sebacinaceae, with fewer SHs belonging to the Serendipitaceae encompassing diverse ericoid-orchid-ECM-endophytic associations. The large proportion of non-host-specific fungi able to form a symbiosis with other non-B. vivipara plants could suggest that the high fungal diversity in B. vivipara comes from an active recruitment of their associates from the co-occurring vegetation. The non-host-specificity suggests that this strategy may offer ecological advantages; specifically, linkages with generalist rather than specialist fungi. Proximity to co-occurring non-B. vivipara plants can maximise the fitness of B. vivipara, allowing more rapid and easy colonisation of the available habitats.


Assuntos
Basidiomycota , Micobioma , Micorrizas , Polygonum , Humanos , Micorrizas/genética , Ecossistema , Plantas
4.
New Phytol ; 236(2): 698-713, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811430

RESUMO

The biogeography of neotropical fungi remains poorly understood. Here, we reconstruct the origins and diversification of neotropical lineages in one of the largest clades of ectomycorrhizal fungi in the globally widespread family Russulaceae. We inferred a supertree of 3285 operational taxonomic units, representing worldwide internal transcribed spacer sequences. We reconstructed biogeographic history and diversification and identified lineages in the Neotropics and adjacent Patagonia. The ectomycorrhizal Russulaceae have a tropical African origin. The oldest lineages in tropical South America, most with African sister groups, date to the mid-Eocene, possibly coinciding with a boreotropical migration corridor. There were several transatlantic dispersal events from Africa more recently. Andean and Central American lineages mostly have north-temperate origins and are associated with North Andean uplift and the general north-south biotic interchange across the Panama isthmus, respectively. Patagonian lineages have Australasian affinities. Diversification rates in tropical South America and other tropical areas are lower than in temperate areas. Neotropical Russulaceae have multiple biogeographic origins since the mid-Eocene involving dispersal and co-migration. Discontinuous distributions of host plants may explain low diversification rates of tropical lowland ectomycorrhizal fungi. Deeply diverging neotropical fungal lineages need to be better documented.


Assuntos
Basidiomycota , Micorrizas , Micorrizas/genética , Filogenia , Filogeografia , América do Sul
5.
PeerJ ; 10: e12924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341038

RESUMO

Perennial ryegrass (Lolium perenne L.) possesses a high level of nutritional quality and is widely used as a forage species to establish permanent pastures in southern Chile. However, the productivity of most such pastures is limited by various environmental agents, such as insect pests and drought. In this context, our work stresses the need for elucidating the ability of fungal endophytes to establish interactions with plants, and to understand how these processes contribute to plant performance and fitness. Therefore, we evaluated the colonization and impact of two native strains of the endophytic insect-pathogenic fungus (EIPF) group isolated from permanent ryegrass pastures in southern Chile. Roots and seeds of ryegrass and scarabaeid larvae were collected from nine different ryegrass pastures in the Los Ríos region of southern Chile to specifically isolate EIPFs belonging to the genera Beauveria and Metarhizium. Fungal isolations were made on 2% water agar with antibiotics, and strains were identified by analyzing the entire internal transcribed spacer (ITS) 1-5.8S-ITS2 ribosomal DNA region. Four strains of Beauveria and 33 strains of Metarhizium were isolated only in scarabaeid larvae from ryegrass pastures across four sites. Experimental mini-pastures that were either not inoculated (control) or co-inoculated with conidia of the strains Beauveria vermiconia NRRL B-67993 (P55_1) and Metarhizium aff. lepidiotae NRRL B-67994 (M25_2) under two soil humidity levels were used. Ryegrass plants were randomly collected from the mini-pastures to characterize EIPF colonization in the roots by real-time PCR and fluorescence microscopy. Aboveground biomass was measured to analyze the putative impact of colonization on the mini-pastures' aboveground phenotypic traits with R software using a linear mixed-effects model and the ANOVA statistical test. Seasonal variation in the relative abundance of EIPFs was observed, which was similar between both strains from autumn to spring, but different in summer. In summer, the relative abundance of both EIPFs decreased under normal moisture conditions, but it did not differ significantly under water stress. The aboveground biomass of ryegrass also increased from autumn to spring and decreased in summer in both the inoculated and control mini-pastures. Although differences were observed between moisture levels, they were not significant between the control and inoculated mini-pastures, except in July (fresh weight and leaf area) and October (dry weight). Our findings indicate that native strains of B. vermiconia NRRL B-67993 (P55_1) and M. aff. lepidiotae NRRL B-67994 (M25_2) colonize and co-exist in the roots of ryegrass, and these had little or no effect on the mini-pastures' aboveground biomass; however, they could have other functions, such as protection against root herbivory by insect pests.


Assuntos
Beauveria , Lolium , Metarhizium , Animais , Beauveria/fisiologia , Metarhizium/genética , Lolium/microbiologia , Insetos/microbiologia , Plantas/microbiologia , Larva/microbiologia
6.
Mycologia ; 113(5): 1110-1121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34190666

RESUMO

Phylogenetic analyses based on a three-locus nuclear data set (ITS1-5.8S-ITS2, the 5' end of the 28S, and the largest subunit of RNA polymerase I) supported the pagoda fungus (Podoserpula, Amylocorticiales) as a monophyletic group most closely related to species of Anomoporia, which is nonmonophyletic, and Amyloathelia. Phylogenetic relationships inferred from internal transcribed spacer (ITS) sequences of specimens sampled in Australia, Chile, China, Madagascar, and New Zealand divided Podoserpula into two major lineages: Clade A containing Australian and New Zealand collections designated P. pusio and the Chinese species P. ailaoshanensis, which have basidiospores with no reaction to Melzer's reagent, and Clade B, which includes a species described from Chile, P. aliweni, and specimens originating from Australia, Chile, Madagascar, and New Zealand with dextrinoid basidiospores. Podoserpula aliweni forms a unique branch in the phylogenetic tree and differs from its most closely related taxon by 1.8-2.1% in the ITS region. The new species exhibits a tree-like habit with a white to concolorous stipe-like base with the hymenophore's main subcylindrical axis bearing up to 18 superimposed pilei, slightly enrolled white margins shading from yellowish white to orange-yellow toward the center, and ellipsoid to broadly ellipsoid basidiospores measuring 4.0-4.5 × 3.5 µm. Ecologically, P. aliweni occurs during the rainy season, often gregariously on dried branches or wet soil under Nothofagus dombeyi or N. obliqua and has a distribution range of more than 600 km in southern Chile. This study extends the known distributional range and increases our knowledge on the phylogenetic diversity and taxonomy in Podoserpula.


Assuntos
Filogenia , Austrália , Chile , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA
7.
PeerJ ; 8: e9732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083101

RESUMO

Understanding the impacts of agricultural practices on belowground fungal communities is crucial in order to preserve biological diversity in agricultural soils and enhance their role in agroecosystem functioning. Although fungal communities are widely distributed, relatively few studies have correlated agricultural production practices. We investigated the diversity, composition and ecological functionality of fungal communities in roots of winter wheat (Triticum aestivum) growing in conventional and organic farming systems. Direct and nested polymerase chain reaction (PCR) amplifications spanning the internal transcribed spacer (ITS) region of the rDNA from pooled fine root samples were performed with two different sets of fungal specific primers. Fungal identification was carried out through similarity searches against validated reference sequences (RefSeq). The R package 'picante' and FUNGuild were used to analyse fungal community composition and trophic mode, respectively. Either by direct or cloning sequencing, 130 complete ITS sequences were clustered into 39 operational taxonomic units (OTUs) (25 singletons), belonging to the Ascomycota (24), the Basidiomycota (14) and to the Glomeromycota (1). Fungal communities from conventional farming sites are phylogenetically more related than expected by chance. Constrained ordination analysis identified total N, total S and Pcal that had a significant effect on the OTU's abundance and distribution, and a further correlation with the diversity of the co-occurring vegetation could be hypothesised. The functional predictions based on FUNGuild suggested that conventional farming increased the presence of plant pathogenic fungi compared with organic farming. Based on diversity, OTU distribution, nutrition mode and the significant phylogenetic clustering of fungal communities, this study shows that fungal communities differ across sampling sites, depending on agricultural practices. Although it is not fully clear which factors determine the fungal communities, our findings suggest that organic farming systems have a positive effect on fungal communities in winter wheat crops.

8.
PLoS One ; 13(12): e0208493, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517179

RESUMO

Altitudinal gradients provide valuable information about the effects of environmental variables on changes in species richness and composition as well as the distribution of below ground fungal communities. Since most knowledge in this respect has been gathered on aboveground communities, we focused our study towards the characterization of belowground fungal communities associated with two different ages of Norway spruce (Picea abies) trees along an altitudinal gradient. By sequencing the internal transcribed spacer (ITS) region on the Illumina platform, we investigated the fungal communities in a floristically and geologically relatively well explored forest on the slope of Mt. Iseler of the Bavarian Alps. From fine roots and rhizosphere of a total of 90 of Norway spruce trees from 18 plots we detected 1285 taxa, with a range of 167 to 506 (average 377) taxa per plot. Fungal taxa are distributed over 96 different orders belonging to the phyla Ascomycota, Basidiomycota, Chrytridiomycota, Glomeromycota, and Mucoromycota. Overall the Agaricales (438 taxa) and Tremellales (81 taxa) belonging to the Basidiomycota and the Hypocreales (65 spp.) and Helotiales (61 taxa) belonging to the Ascomycota represented the taxon richest orders. The evaluation of our multivariate generalized mixed models indicate that the altitude has a significant influence on the composition of the fungal communities (p < 0.003) and that tree age determines community diversity (p < 0.05). A total of 47 ecological guilds were detected, of which the ectomycorrhizal and saprophytic guilds were the most taxon-rich. Our ITS amplicon Illumina sequencing approach allowed us to characterize a high fungal community diversity that would not be possible to capture with fruiting body surveys alone. We conclude that it is an invaluable tool for diverse monitoring tasks and inventorying biodiversity, especially in the detection of microorganisms developing very ephemeral and/or inconspicuous fruiting bodies or lacking them all together. Results suggest that the altitude mainly influences the community composition, whereas fungal diversity becomes higher in mature/older trees. Finally, we demonstrate that novel techniques from bacterial microbiome analyses are also useful for studying fungal diversity and community structure in a DNA metabarcoding approach, but that incomplete reference sequence databases so far limit effective identification.


Assuntos
Fungos/classificação , Picea/crescimento & desenvolvimento , Análise de Sequência de DNA/métodos , Altitude , Biodiversidade , DNA Fúngico/genética , Fungos/genética , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Picea/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Microbiologia do Solo
10.
FEMS Microbiol Ecol ; 92(4): fiw045, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26929438

RESUMO

Different distance-based threshold selection approaches were used to assess and compare use of the internal transcribed spacer (ITS) region to distinguish among 901 Cortinarius species represented by >3000 collections. Sources of error associated with genetic markers and selection approaches were explored and evaluated using MOTUs from genus and lineage based-alignments. Our study indicates that 1%-2% more species can be distinguished by using the full-length ITS barcode as compared to either the ITS1 or ITS2 regions alone. Optimal threshold values for different picking approaches and genetic marker lengths inferred from a subset of species containing major lineages ranged from 97.0% to 99.5% sequence similarity using clustering optimization and UNITE SH, and from 1% to 2% sequence dissimilarity with CROP. Errors for the optimal cutoff ranged from 0% to 70%, and these can be reduced to a maximum of 22% when excluding species lacking a barcode gap. A threshold value of 99% is suitable for distinguishing species in the majority of lineages in the genus using the entire ITS region but only 90% of the species could be identified using just the ITS1 or ITS2 region. Prior identification of species, lacking barcode gaps and their subsequent separate analyses, maximized the accuracy of threshold approaches.


Assuntos
Cortinarius/classificação , Cortinarius/genética , Código de Barras de DNA Taxonômico/métodos , DNA Intergênico/genética , Micorrizas/genética , Marcadores Genéticos/genética , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA
11.
PLoS One ; 11(3): e0149531, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26938104

RESUMO

Patterns of geographic distribution and composition of fungal communities are still poorly understood. Widespread occurrence in terrestrial ecosystems and the unique richness of interactions of Sebacinales with plants make them a target group to study evolutionary events in the light of nutritional lifestyle. We inferred diversity patterns, phylogenetic structures and divergence times of Sebacinales with respect to their nutritional lifestyles by integrating data from fossil-calibrated phylogenetic analyses. Relaxed molecular clock analyses indicated that Sebacinales originated late Permian within Basidiomycota, and their split into Sebacinaceae and Serendipitaceae nom. prov. likely occurred during the late Jurassic and the early Cretaceous, coinciding with major diversifications of land plants. In Sebacinaceae, diversification of species with ectomycorrhizal lifestyle presumably started during the Paleocene. Lineage radiations of the core group of ericoid and cavendishioid mycorrhizal Sebacinales started probably in the Eocene, coinciding with diversification events of their hosts. The diversification of Sebacinales with jungermannioid interactions started during the Oligocene, and occurred much later than the diversification of their hosts. Sebacinales communities associated either with ectomycorrhizal plants, achlorophyllous orchids, ericoid and cavendishioid Ericaceae or liverworts were phylogenetically clustered and globally distributed. Major Sebacinales lineage diversifications started after the continents had drifted apart. We also briefly discuss dispersal patterns of extant Sebacinales.


Assuntos
Basidiomycota/genética , Evolução Biológica , Fósseis/microbiologia , Filogenia , Basidiomycota/classificação , Basidiomycota/metabolismo , Ecossistema , Raízes de Plantas/microbiologia , Plantas/microbiologia
12.
PLoS One ; 11(1): e0147107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26790149

RESUMO

The evolutionary history, divergence times and phylogenetic relationships of Uleiella chilensis (Ustilaginomycotina, smut fungi) associated with Araucaria araucana were analysed. DNA sequences from multiple gene regions and morphology were analysed and compared to other members of the Basidiomycota to determine the phylogenetic placement of smut fungi on gymnosperms. Divergence time estimates indicate that the majority of smut fungal orders diversified during the Triassic-Jurassic period. However, the origin and relationships of several orders remain uncertain. The most recent common ancestor between Uleiella chilensis and Violaceomyces palustris has been dated to the Lower Cretaceous. Comparisons of divergence time estimates between smut fungi and host plants lead to the hypothesis that the early Ustilaginomycotina had a saprobic lifestyle. As there are only two extant species of Araucaria in South America, each hosting a unique Uleiella species, we suggest that either coevolution or a host shift followed by allopatric speciation are the most likely explanations for the current geographic restriction of Uleiella and its low diversity. Phylogenetic and age estimation analyses, ecology, the unusual life-cycle and the peculiar combination of septal and haustorial characteristics support Uleiella chilensis as a distinct lineage among the Ustilaginomycotina. Here, we describe a new ustilaginomycetous order, the Uleiellales to accommodate Uleiella. Within the Ustilaginomycetes, Uleiellales are sister taxon to the Violaceomycetales.


Assuntos
Evolução Biológica , Parasitos/patogenicidade , Traqueófitas/parasitologia , Ustilaginales/patogenicidade , Animais , DNA Fúngico/genética , Filogenia , América do Sul
13.
PLoS One ; 10(7): e0128183, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26200112

RESUMO

Entorrhiza is a small fungal genus comprising 14 species that all cause galls on roots of Cyperaceae and Juncaceae. Although this genus was established 130 years ago, crucial questions on the phylogenetic relationships and biology of this enigmatic taxon are still unanswered. In order to infer a robust hypothesis about the phylogenetic position of Entorrhiza and to evaluate evolutionary trends, multiple gene sequences and morphological characteristics of Entorrhiza were analyzed and compared with respective findings in Fungi. In our comprehensive five-gene analyses Entorrhiza appeared as a highly supported monophyletic lineage representing the sister group to the rest of the Dikarya, a phylogenetic placement that received but moderate maximum likelihood and maximum parsimony bootstrap support. An alternative maximum likelihood tree with the constraint that Entorrhiza forms a monophyletic group with Basidiomycota could not be rejected. According to the first phylogenetic hypothesis, the teliospore tetrads of Entorrhiza represent the prototype of the dikaryan meiosporangium. The alternative hypothesis is supported by similarities in septal pore structure, cell wall and spindle pole bodies. Based on the isolated phylogenetic position of Entorrhiza and its peculiar combination of features related to ultrastructure and reproduction mode, we propose a new phylum Entorrhizomycota, for the genus Entorrhiza, which represents an apparently widespread group of inconspicuous fungi.


Assuntos
DNA Fúngico/análise , Fungos/classificação , Evolução Biológica , Evolução Molecular , Fungos/genética , Fungos/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Filogenia
14.
PLoS One ; 9(4): e94676, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743185

RESUMO

Endophytic fungi are known to be commonly associated with herbaceous plants, however, there are few studies focusing on their occurrence and distribution in plant roots from ecosystems with different land uses. To explore the phylogenetic diversity and community structure of Sebacinales endophytes from agricultural and grassland habitats under different land uses, we analysed the roots of herbaceous plants using strain isolation, polymerase chain reaction (PCR), transmission electron microscopy (TEM) and co-cultivation experiments. A new sebacinoid strain named Serendipita herbamans belonging to Sebacinales group B was isolated from the roots of Bistorta vivipara, which is characterized by colourless monilioid cells (chlamydospores) that become yellow with age. This species was very common and widely distributed in association with a broad spectrum of herbaceous plant families in diverse habitats, independent of land use type. Ultrastructurally, the presence of S. herbamans was detected in the cortical cells of Plantago media, Potentilla anserina and Triticum aestivum. In addition, 13 few frequent molecular operational taxonomic units (MOTUs) or species were found across agricultural and grassland habitats, which did not exhibit a distinctive phylogenetic structure. Laboratory-based assays indicate that S. herbamans has the ability to colonize fine roots and stimulate plant growth. Although endophytic Sebacinales are widely distributed across agricultural and grassland habitats, TEM and nested PCR analyses reinforce the observation that these microorganisms are present in low quantity in plant roots, with no evidence of host specificity.


Assuntos
Arabidopsis/microbiologia , Basidiomycota/fisiologia , Endófitos/fisiologia , Pradaria , Filogenia , Raízes de Plantas/microbiologia , Poa/microbiologia , Agricultura , Basidiomycota/genética , Endófitos/genética , Variação Genética
15.
BMC Evol Biol ; 13: 102, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23697379

RESUMO

BACKGROUND: Phylogenetic studies, particularly those based on rDNA sequences from plant roots and basidiomata, have revealed a strikingly high genetic diversity in the Sebacinales. However, the factors determining this genetic diversity at higher and lower taxonomic levels within this order are still unknown. In this study, we analysed patterns of genetic variation within two morphological species, Sebacina epigaea and S. incrustans, based on 340 DNA haplotype sequences of independent genetic markers from the nuclear (ITS + 5.8S + D1/D2, RPB2) and mitochondrial (ATP6) genomes for 98 population samples. By characterising the genetic population structure within these species, we provide insights into species boundaries and the possible factors responsible for genetic diversity at a regional geographic scale. RESULTS: We found that recombination events are relatively common between natural populations within Sebacina epigaea and S. incrustans, and play a significant role in generating intraspecific genetic diversity. Furthermore, we also found that RPB2 and ATP6 genes display higher levels of intraspecific synonymous polymorphism. Phylogenetic and demographic analyses based on nuclear and mitochondrial loci revealed three distinct phylogenetic lineages within of each of the morphospecies S. epigaea and S. incrustans: one major and widely distributed lineage, and two geographically restricted lineages, respectively. We found almost no differential morphological or ecological characteristics that could be used to discriminate between these lineages. CONCLUSIONS: Our results suggest that recombination and negative selection have played significant roles in generating genetic diversity within these morphological species at small geographical scales. Concordance between gene genealogies identified lineages/cryptic species that have evolved independently for a relatively long period of time. These putative species were not associated with geographic provenance, geographic barrier, host preference or distinct phenotypic innovations.


Assuntos
Basidiomycota/genética , Especiação Genética , Variação Genética , Sequência de Bases , Basidiomycota/classificação , DNA Fúngico/genética , DNA Ribossômico/genética , Evolução Molecular , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Filogenia
16.
FEMS Microbiol Ecol ; 83(2): 265-78, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22891937

RESUMO

To study the diversity and phylogenetic structure of Sebacinales communities from eight vegetation communities along an altitudinal gradient in the Bavarian Alps (Germany), we analysed 456 thalli or roots of plants. We detected 264 sebacinoid sequences, spanning the intergenic transcribed spacer region, 5.8S and D1/D2 regions of the nuclear rRNA gene, mostly using a nested PCR approach. Based on 97% sequence similarity, 73 Sebacinales molecular taxonomic units were found from 70 host species belonging to 44 plant families. Twenty-six molecular taxonomic units represented singletons, the most frequent of these being restricted exclusively to either wooded or grassland habitats. Although Sebacinales appear to occur in low abundance in plant roots, these microorganisms are phylogenetically diverse and widely spread in the ecosystems studied. Ordination analyses showed that land use, pH and humus content strongly influence the diversity and assembly of Sebacinales. In most cases, Sebacinales communities in ecosystems with extreme soil conditions or intensive land use exhibited significant phylogenetic clustering, whereas in undisturbed plant communities no trend was observed. These results suggest that ecosystem disturbance and environmental forces have an influence on the diversity and structure of Sebacinales community assembly over local and spatial scales.


Assuntos
Basidiomycota/classificação , Plantas/microbiologia , Altitude , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Ecossistema , Alemanha , Especificidade de Hospedeiro , Micorrizas/classificação , Micorrizas/genética , Filogenia , Raízes de Plantas/microbiologia , Solo/química
17.
Fungal Biol ; 115(9): 839-51, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21872181

RESUMO

A total of 35 population samples of the liverwort genera Aneura (A. pinguis) and Riccardia (R. latifrons, R. multifida, and R. palmata) were sampled from diverse habitats and geographical provenances in Germany, Austria, and Switzerland. Light and transmission electron microscopy were used to characterise the morphological features of the associations, and phylogenetic analyses based on internal transcribed spacers (ITS) and the D1/D2 regions of the fungal 28S rDNA were used to address diversity and phylogenetic relationships. By comparing the cellular structures of the plant-fungus interactions, we recognised the following states of fungal colonisation within the thalli: fungus-free, epiphytic, intercellular, and intracellular. Colonising hyphae showed dolipores with imperforate parenthesomes, slime bodies, and multilayered walls. Colonised liverwort cells had pleomorphic nuclei and elongated starch-free chloroplasts with distinctive grana. Our analyses revealed six phylogenetic groups of tulasnelloid fungi associated with liverworts, where major lineages mostly share similar host and/or ecological specialisations. The mode of colonisation of the tulasnelloid mycobionts in Aneura and Riccardia sharing identical fungal sequences is different. Consequently, the mode of colonisation may be host-dependent. Finally, our findings demonstrate that Aneuraceae are model organisms for evolutionary studies of symbiotic associations between liverworts and fungi.


Assuntos
Basidiomycota/isolamento & purificação , Basidiomycota/fisiologia , Hepatófitas/microbiologia , Hepatófitas/fisiologia , Simbiose , Basidiomycota/classificação , Basidiomycota/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Modelos Biológicos , Dados de Sequência Molecular , Filogenia
18.
BMC Evol Biol ; 11: 213, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21771336

RESUMO

BACKGROUND: Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) C. arcuatorum, 2) C. aureofulvus, 3) C. elegantior and 4) C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. RESULTS: Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. CONCLUSIONS: Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric populations in the New World; 2) two divergent lineages in C. elegantior gave rise to the New World and Old World haplotypes, respectively; and 3) the low levels of genetic divergence within C. aureofulvus and C. napus may be the result of more recent demographic population expansions. The scenario of migration via the Bering Land Bridge provides the most probable explanation for contemporaneous disjunct geographic distributions of these species, but it does not offer an explanation for the low degree of genetic divergence between populations of C. aureofulvus and C. napus. Our findings are mostly consistent with the designation of New World allopatric populations as separate species from the European counterpart species C. arcuatorum and C. elegantior. We propose the synonymy of C. albobrunnoides, C. albobrunnoides var. violaceovelatus and C. subpurpureophyllus var. sulphureovelatus with C. napus. The results also reinforce previous observations that linked C. arcuatorum and C. aureofulvus displaying distributions in parts of North America and Europe. Interpretations of the population structure of these fungi suggest that host tree history has heavily influenced their modern distributions; however, the complex issues related to co-migration of these fungi with their tree hosts remain unclear at this time.


Assuntos
Cortinarius/classificação , Cortinarius/genética , Evolução Molecular , Sequência de Bases , Cortinarius/crescimento & desenvolvimento , DNA Fúngico/genética , DNA Intergênico/genética , Variação Genética , Haplótipos , Dados de Sequência Molecular , Filogenia
19.
PLoS One ; 6(2): e16793, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21347229

RESUMO

Inconspicuous basidiomycetes from the order Sebacinales are known to be involved in a puzzling variety of mutualistic plant-fungal symbioses (mycorrhizae), which presumably involve transport of mineral nutrients. Recently a few members of this fungal order not fitting this definition and commonly referred to as 'endophytes' have raised considerable interest by their ability to enhance plant growth and to increase resistance of their host plants against abiotic stress factors and fungal pathogens. Using DNA-based detection and electron microscopy, we show that Sebacinales are not only extremely versatile in their mycorrhizal associations, but are also almost universally present as symptomless endophytes. They occurred in field specimens of bryophytes, pteridophytes and all families of herbaceous angiosperms we investigated, including liverworts, wheat, maize, and the non-mycorrhizal model plant Arabidopsis thaliana. They were present in all habitats we studied on four continents. We even detected these fungi in herbarium specimens originating from pioneering field trips to North Africa in the 1830s/40s. No geographical or host patterns were detected. Our data suggest that the multitude of mycorrhizal interactions in Sebacinales may have arisen from an ancestral endophytic habit by specialization. Considering their proven beneficial influence on plant growth and their ubiquity, endophytic Sebacinales may be a previously unrecognized universal hidden force in plant ecosystems.


Assuntos
Basidiomycota/isolamento & purificação , Endófitos/isolamento & purificação , Basidiomycota/genética , Basidiomycota/ultraestrutura , DNA Fúngico/genética , Endófitos/genética , Endófitos/ultraestrutura , Evolução Molecular , Filogenia , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase , Triticum/microbiologia
20.
Proc Biol Sci ; 277(1685): 1289-98, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20007181

RESUMO

Distinctive groups of fungi are involved in the diverse mycorrhizal associations of land plants. All previously known mycorrhiza-forming Basidiomycota associated with trees, ericads, liverworts or orchids are hosted in Agaricomycetes, Agaricomycotina. Here we demonstrate for the first time that Atractiellomycetes, members of the 'rust' lineage (Pucciniomycotina), are mycobionts of orchids. The mycobionts of 103 terrestrial and epiphytic orchid individuals, sampled in the tropical mountain rainforest of Southern Ecuador, were identified by sequencing the whole ITS1-5.8S-ITS2 region and part of 28S rDNA. Mycorrhizae of 13 orchid individuals were investigated by transmission electron microscopy. Simple septal pores and symplechosomes in the hyphal coils of mycorrhizae from four orchid individuals indicated members of Atractiellomycetes. Molecular phylogeny of sequences from mycobionts of 32 orchid individuals out of 103 samples confirmed Atractiellomycetes and the placement in Pucciniomycotina, previously known to comprise only parasitic and saprophytic fungi. Thus, our finding reveals these fungi, frequently associated to neotropical orchids, as the most basal living basidiomycetes involved in mycorrhizal associations of land plants.


Assuntos
Micorrizas/genética , Micorrizas/fisiologia , Orchidaceae/microbiologia , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Equador , Micorrizas/classificação , Micorrizas/ultraestrutura , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA