Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Heredity (Edinb) ; 126(2): 366-382, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33110229

RESUMO

Functional traits are organismal attributes that can respond to environmental cues, thereby providing important ecological functions. In addition, an organism's potential for adaptation is defined by the patterns of covariation among groups of functionally related traits. Whether an organism is evolutionarily constrained or has the potential for adaptation is based on the phenotypic integration or modularity of these traits. Here, we revisited leaf morphology in two European sympatric white oaks (Quercus petraea (Matt.) Liebl. and Quercus robur L.), sampling 2098 individuals, across much of their geographical distribution ranges. At the phenotypic level, leaf morphology traditionally encompasses discriminant attributes among different oak species. Here, we estimated in situ heritability, genetic correlation, and integration across such attributes. Also, we performed Selection Response Decomposition to test these traits for potential differences in oak species' evolutionary responses. Based on the uncovered functional units of traits (modules) in our study, the morphological module "leaf size gradient" was highlighted among functionally integrated traits. Equally, this module was defined in both oaks as being under "global regulation" in vegetative bud establishment and development. Lamina basal shape and intercalary veins' number were not, or, less integrated within the initially defined leaf functional unit, suggesting more than one module within the leaf traits' ensemble. Since these traits generally show the greatest species discriminatory power, they potentially underwent effective differential response to selection among oaks. Indeed, the selection of these traits could have driven the ecological preferences between the two sympatric oaks growing under different microclimates.


Assuntos
Quercus , Adaptação Fisiológica , Evolução Biológica , Humanos , Folhas de Planta/genética , Quercus/genética , Seleção Genética
2.
Mol Ecol ; 29(13): 2359-2378, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32567080

RESUMO

Populations residing near species' low-latitude range margins (LLMs) often occur in warmer and drier environments than those in the core range. Thus, their genetic composition could be shaped by climatic drivers that differ from those occurring at higher latitudes, resulting in potentially adaptive variants of conservation value. Such variants could facilitate the adaptation of populations from other portions of the geographical range to similar future conditions anticipated under ongoing climate change. However, very few studies have assessed standing genetic variation at potentially adaptive loci in natural LLM populations. We investigated standing genetic variation at single nucleotide polymorphisms (SNPs) located within 117 candidate genes and its links to putative climatic selection pressures across 19 pedunculate oak (Quercus robur L.) populations distributed along a regional climatic gradient near the species' southern range margin in southeastern Europe. These populations are restricted to floodplain forests along large lowland rivers, whose hydric regime is undergoing significant shifts under modern rapid climate change. The populations showed very weak geographical structure, suggesting extensive genetic connectivity and gene flow or shared ancestry. We identified eight (6.2%) positive FST -outlier loci, and genotype-environment association analyses revealed consistent associations between SNP allele frequencies and several climatic variables linked to water availability. A total of 61 associations involving 37 SNPs (28.5%) from 35 annotated genes provided important insights into putative functional mechanisms in our system. Our findings provide empirical support for the role of LLM populations as sources of potentially adaptive variation that could enhance species' resilience to climate change-related pressures.


Assuntos
Polimorfismo de Nucleotídeo Único , Quercus , Água , Europa (Continente) , Frequência do Gene , Genética Populacional , Quercus/genética , Quercus/fisiologia
3.
Tree Physiol ; 35(9): 1000-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093373

RESUMO

We have carried out a candidate-gene-based association genetic study in Pinus pinaster Aiton and evaluated the predictive performance for genetic merit gain of the most significantly associated genes and single nucleotide polymorphisms (SNPs). We used a second generation 384-SNP array enriched with candidate genes for growth and wood properties to genotype mother trees collected in 20 natural populations covering most of the European distribution of the species. Phenotypic data for total height, polycyclism, root-collar diameter and biomass were obtained from a replicated provenance-progeny trial located in two sites with contrasting environments (Atlantic vs Mediterranean climate). General linear models identified strong associations between growth traits (total height and polycyclism) and four SNPs from the korrigan candidate gene, after multiple testing corrections using false discovery rate. The combined genomic breeding value predictions assessed for the four associated korrigan SNPs by ridge regression-best linear unbiased prediction (RR-BLUP) and cross-validation accounted for up to 8 and 15% of the phenotypic variance for height and polycyclic growth, respectively, and did not improve adding SNPs from other growth-related candidate genes. For root-collar diameter and total biomass, they accounted for 1.6 and 1.1% of the phenotypic variance, respectively, but increased to 15 and 4.1% when other SNPs from lp3.1, lp3.3 and cad were included in RR-BLUP models. These results point towards a desirable integration of candidate-gene studies as a means to pre-select relevant markers, and aid genomic selection in maritime pine breeding programs.


Assuntos
Arabidopsis/genética , Celulase/genética , Pinus/enzimologia , Pinus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Cruzamento , Genoma de Planta , Haplótipos/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Pinus/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
4.
Genetics ; 199(3): 793-807, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25549630

RESUMO

Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change.


Assuntos
Aclimatação/genética , Mudança Climática , Pinus/genética , Polimorfismo de Nucleotídeo Único , Genoma de Planta , Temperatura
5.
BMC Genomics ; 15: 238, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24673733

RESUMO

BACKGROUND: The Amazonian rainforest is predicted to suffer from ongoing environmental changes. Despite the need to evaluate the impact of such changes on tree genetic diversity, we almost entirely lack genomic resources. RESULTS: In this study, we analysed the transcriptome of four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola michelii) with contrasting ecological features, belonging to four widespread botanical families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene functional annotation and marker discovery. Mismatch identification takes into account single-base quality values as well as the likelihood of false variants as a function of contig depth and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390 (for Eperua falcata) contigs were assembled. Organs varied in the numbers of unigenes they apparently express, with higher number in roots. Patterns of gene expression were similar across species, with metabolism of aromatic compounds standing out as an overrepresented gene function. Transcripts corresponding to several gene functions were found to be over- or underrepresented in each organ. We identified between 4434 (for Symphonia globulifera) and 9076 (for Virola surinamensis) well-supported mismatches. The resulting overall mismatch density was comprised between 0.89 (S. globulifera) and 1.05 (V. surinamensis) mismatches/100 bp in variation-containing contigs. CONCLUSION: The relative representation of gene functions in the four transcriptomes suggests that secondary metabolism may be particularly important in tropical trees. The differential representation of transcripts among tissues suggests differential gene expression, which opens the way to functional studies in these non-model, ecologically important species. We found substantial amounts of mismatches in the four species. These newly identified putative variants are a first step towards acquiring much needed genomic resources for tropical tree species.


Assuntos
Genes de Plantas , Transcriptoma , Árvores/genética , Pareamento Incorreto de Bases , Clusiaceae/genética , Mapeamento de Sequências Contíguas , Fabaceae/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Meliaceae/genética , Myristicaceae/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
6.
J Evol Biol ; 25(1): 157-73, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22092648

RESUMO

Very little is known about the nature and strength of reproductive isolation (RI) in Quercus species, despite extensive research on the estimation and evolutionary significance of hybridization rates. We characterized postmating pre- and postzygotic RI between two hybridizing oak species, Quercus robur and Quercus petraea, using a large set of controlled crosses between different genotypes. Various traits potentially associated with reproductive barriers were quantified at several life history stages, from pollen-pistil interactions to seed set and progeny fitness-related traits. Results indicate strong intrinsic postmating prezygotic barriers, with significant barriers also at the postzygotic level, but relatively weaker extrinsic barriers on early hybrid fitness measures assessed in controlled conditions. Using general linear modelling of common garden data with clonal replicates, we showed that most traits exhibited important genotypic differences, as well as different levels of sensitivity to micro-environmental heterogeneity. These new findings suggest a large potential genetic diversity and plasticity of reproductive barriers and are confronted with hybridization evidence in these oak species.


Assuntos
Hibridização Genética/fisiologia , Quercus/fisiologia , Isolamento Reprodutivo , Análise de Variância , Flores/anatomia & histologia , Aptidão Genética , Especiação Genética , Genótipo , Modelos Lineares , Fenótipo , Fenômenos Fisiológicos Vegetais/genética , Quercus/anatomia & histologia , Quercus/genética , Seleção Genética
7.
BMC Genomics ; 12: 368, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21767361

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe. RESULTS: We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. CONCLUSIONS: Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers.


Assuntos
Pinus taeda/genética , Pinus/genética , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem
8.
PLoS One ; 5(6): e11034, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20543950

RESUMO

BACKGROUND: There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size ( approximately 23.8 Gb/C). METHODOLOGY/PRINCIPAL FINDINGS: A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). CONCLUSIONS/SIGNIFICANCE: This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome.


Assuntos
Pinus/genética , Polimorfismo de Nucleotídeo Único , Etiquetas de Sequências Expressas , Frequência do Gene , Genes de Plantas , Técnicas In Vitro , Reprodutibilidade dos Testes
9.
Stat Appl Genet Mol Biol ; 7(1): Article 20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18597666

RESUMO

The allelic association or linkage disequilibrium between two loci is a parameter of fundamental interest in modern population genetics for evolutionary inference and association mapping studies. Among the many measures available, the optimal measure of allelic association rho presents a strong evolutionary theory basis and is modeled on the physical distance along the chromosome with the Malécot equation for isolation by distance. Moreover, rho is equal to the absolute value of D', the standardized measure of gametic disequilibrium. We studied here the statistical properties of the rho sample estimator. We derived its asymptotic probability distribution and showed that it is neither asymptotically normal nor unbiased when rho=0 or when allelic frequencies are equal at both loci, in contrast to previous claims. This asymptotic study leads to propose a new test for absence of linkage disequilibrium. We compared it to Pearson's Chi2 test for independence in a contingency table and showed by simulations that the range in power of these two tests depends on the sign of D'. The new test outperformed slightly the Chi2 test, when D', polarized with respect to major alleles, is negative. Finally, we derived the asymptotic bias and information of the rho estimator that are due to the experimental sampling and showed by simulation that its bias is large in small samples. The consequences of these findings on applications using the rho measure are then discussed in particular for constructing LD unit maps, and call for a revised statistical treatment.


Assuntos
Desequilíbrio de Ligação , Modelos Genéticos , Alelos , Probabilidade
10.
New Phytol ; 178(2): 283-301, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18298434

RESUMO

Environmental, developmental and genetic factors affect variation in wood properties at the chemical, anatomical and physical levels. Here, the phenotypic variation observed along the tree stem was explored and the hypothesis tested that this variation could be the result of the differential expression of genes/proteins during wood formation. Differentiating xylem samples of maritime pine (Pinus pinaster) were collected from the top (crown wood, CW) to the bottom (base wood, BW) of adult trees. These samples were characterized by Fourier transform infrared spectroscopy (FTIR) and analytical pyrolysis. Two main groups of samples, corresponding to CW and BW, could be distinguished from cell wall chemical composition. A genomic approach, combining large-scale production of expressed sequence tags (ESTs), gene expression profiling and quantitative proteomics analysis, allowed identification of 262 unigenes (out of 3512) and 231 proteins (out of 1372 spots) that were differentially expressed along the stem. A good relationship was found between functional categories from transcriptomic and proteomic data. A good fit between the molecular mechanisms involved in CW-BW formation and these two types of wood phenotypic differences was also observed. This work provides a list of candidate genes for wood properties that will be tested in forward genetics.


Assuntos
Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pinus/química , Pinus/genética , Madeira/metabolismo , Envelhecimento , Fenótipo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteoma , Xilema/citologia , Xilema/metabolismo
11.
Mol Biol Evol ; 25(2): 417-37, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18065486

RESUMO

The importance of natural selection for shaping adaptive trait differentiation among natural populations of allogamous tree species has long been recognized. Determining the molecular basis of local adaptation remains largely unresolved, and the respective roles of selection and demography in shaping population structure are actively debated. Using a multilocus scan that aims to detect outliers from simulated neutral expectations, we analyzed patterns of nucleotide diversity and genetic differentiation at 11 polymorphic candidate genes for drought stress tolerance in phenotypically contrasted Pinus pinaster Ait. populations across its geographical range. We compared 3 coalescent-based methods: 2 frequentist-like, including 1 approach specifically developed for biallelic single nucleotide polymorphisms (SNPs) here and 1 Bayesian. Five genes showed outlier patterns that were robust across methods at the haplotype level for 2 of them. Two genes presented higher F(ST) values than expected (PR-AGP4 and erd3), suggesting that they could have been affected by the action of diversifying selection among populations. In contrast, 3 genes presented lower F(ST) values than expected (dhn-1, dhn2, and lp3-1), which could represent signatures of homogenizing selection among populations. A smaller proportion of outliers were detected at the SNP level suggesting the potential functional significance of particular combinations of sites in drought-response candidate genes. The Bayesian method appeared robust to low sample sizes, flexible to assumptions regarding migration rates, and powerful for detecting selection at the haplotype level, but the frequentist-like method adapted to SNPs was more efficient for the identification of outlier SNPs showing low differentiation. Population-specific effects estimated in the Bayesian method also revealed populations with lower immigration rates, which could have led to favorable situations for local adaptation. Outlier patterns are discussed in relation to the different genes' putative involvement in drought tolerance responses, from published results in transcriptomics and association mapping in P. pinaster and other related species. These genes clearly constitute relevant candidates for future association studies in P. pinaster.


Assuntos
Variação Genética , Repetições de Microssatélites/genética , Pinus/genética , Seleção Genética , Água/metabolismo
12.
New Phytol ; 167(1): 101-12, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15948834

RESUMO

Nucleotide diversity in eight genes related to wood formation was investigated in two pine species, Pinus pinaster and P. radiata. The nucleotide diversity patterns observed and their properties were compared between the two species according to the specific characteristics of the samples analysed. A lower diversity was observed in P. radiata compared with P. pinaster. In particular, for two genes (Pp1, a glycin-rich protein homolog and CesA3, a cellulose synthase) the magnitude of the reduction of diversity potentially indicates the action of nonneutral factors. For both, particular patterns of nucleotide diversity were observed in P. pinaster (high genetic differentiation for Pp1 and close to zero differentiation associated with positive Tajima's D-value for CesA3). In addition, KORRIGAN, a gene involved in cellulose-hemicellulose assembly, demonstrated a negative Tajima's D-value in P. radiata accompanied by a high genetic differentiation in P. pinaster. The consistency of the results obtained at the nucleotide level, together with the physiological roles of the genes analysed, indicate their potential susceptibility to artificial and/or natural selection.


Assuntos
Variação Genética , Pinus/crescimento & desenvolvimento , Pinus/genética , Sequência de Bases , Genes de Plantas , Haplótipos , Desequilíbrio de Ligação , Madeira
13.
Mol Ecol ; 14(3): 885-90, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723680

RESUMO

Mutation rates at microsatellites tend to increase with the number of repeats of the motif, leading to higher levels of polymorphism at long microsatellites. To standardize levels of diversity when microsatellites differ in size, we investigate the relationship between tract length and variation and provide a formula to adjust allelic richness to a fixed mean number of repeats in the specific case of chloroplast microsatellites. A comparison between 39 loci from eight species of conifers (where chloroplast DNA is paternally inherited) and 64 loci from 12 species of angiosperms (where chloroplast DNA is generally predominantly maternally inherited) indicates that the greater allelic richness found in conifers remains significant after controlling for number of repeats. The approach stresses the advantage of reporting variation in number of repeats instead of relative fragment sizes.


Assuntos
Variação Genética , Repetições de Microssatélites/genética , Modelos Genéticos , DNA de Cloroplastos/genética , Frequência do Gene , Magnoliopsida/genética , Mutação/genética , Análise de Regressão , Traqueófitas/genética
14.
Plant Mol Biol ; 54(3): 461-70, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15284499

RESUMO

We developed an automated pipeline for the detection of single nucleotide polymorphisms (SNPs) in expressed sequence tag (EST) data sets, by combining three DNA sequence analysis programs: Phred, Phrap and PolyBayes. This application requires access to the individual electrophoregram traces. First, a reference set of 65 SNPs was obtained from the sequencing of 30 gametes in 13 maritime pine (Pinus pinaster Ait.) gene fragments (6671 bp), resulting in a frequency of 1 SNP every 102.6 bp. Second, parameters of the three programs were optimized in order to retrieve as many true SNPs, while keeping the rate of false positive as low as possible. Overall, the efficiency of detection of true SNPs was 83.1%. However, this rate varied largely as a function of the rare SNP allele frequency: down to 41% for rare SNP alleles (frequency < 10%), up to 98% for allele frequencies above 10%. Third, the detection method was applied to the 18498 assembled maritime pine (Pinus pinaster Ait.) ESTs, allowing to identify a total of 1400 candidate SNPs, in contigs containing between 4 and 20 sequence reads. These genetic resources, described for the first time in a forest tree species, were made available at http://www.pierroton.inra/genetics/Pinesnps. We also derived an analytical expression for the SNP detection probability as a function of the SNP allele frequency, the number of haploid genomes used to generate the EST sequence database, and the sample size of the contigs considered for SNP detection. The frequency of the SNP allele was shown to be the main factor influencing the probability of SNP detection.


Assuntos
Etiquetas de Sequências Expressas , Pinus/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Algoritmos , Alelos , Frequência do Gene , Mutação Puntual , Reprodutibilidade dos Testes
15.
Mol Ecol ; 11(8): 1499-514, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12144669

RESUMO

An increasing number of hypotheses are being proposed to explain the faster growth potential of triploids in molluscs, including their partial sterility or their higher heterozygosity compared to diploids. Triploid advantage however, remains controversial for poorer sites, because of a potential trade-off with survival. These questions were addressed in Crassostrea gigas by deploying meiosis II triploids and their diploid siblings from a single mass spawning of three males and seven females, in two contrasting locations for their trophic resources. One hundred and fifty individuals were sampled at each site after nine months, measured for weight and biochemical composition, and genotyped using three microsatellite and seven allozyme loci. Higher performance was observed at the fast-growing site for all traits except shell weight, and triploids had greater weights and biochemical contents than diploids at harvest. Triploids also grew faster at the poorer site, and showed similar survival rates to diploids at both sites. Triploids had significantly higher average allozyme and microsatellite diversity. However, they performed better for a wide range of individual heterozygosity values, arguing for an advantage of the triploid state per se, that could be due to positive effects on growth of both sterility of triploids with subsequent resource re-allocation and possible faster transcription with three copies of each gene. Despite evidence of very low or no inbreeding in the diploid sample, positive associations between individual allozyme diversity and growth were detected, which explained little but significant amounts of phenotypic variation. These associations were interpreted as direct effects of allozymes, either alone or including epistatic interactions with other loci. In addition, measures of individual distance (mean-d2) specific to microsatellites, were negatively correlated with growth in diploids, indicating possible effects of outbreeding depression between more distant genomes of parents from distinct populations.


Assuntos
Ecossistema , Variação Genética , Ostreidae/genética , Ploidias , Animais , Interpretação Estatística de Dados , Meio Ambiente , Enzimas/genética , Feminino , Genótipo , Glicogênio/metabolismo , Masculino , Repetições de Microssatélites , Ostreidae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA