Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biomedicines ; 10(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327440

RESUMO

KMT2A-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year of age) represents an aggressive type of childhood leukemia characterized by a poor clinical outcome with a survival chance of <50%. Implementing novel therapeutic approaches for these patients is a slow-paced and costly process. Here, we utilized a drug-repurposing strategy to identify potent drugs that could expeditiously be translated into clinical applications. We performed high-throughput screens of various drug libraries, comprising 4191 different (mostly FDA-approved) compounds in primary KMT2A-rearranged infant ALL patient samples (n = 2). The most effective drugs were then tested on non-leukemic whole bone marrow samples (n = 2) to select drugs with a favorable therapeutic index for bone marrow toxicity. The identified agents frequently belonged to several recurrent drug classes, including BCL-2, histone deacetylase, topoisomerase, microtubule, and MDM2/p53 inhibitors, as well as cardiac glycosides and corticosteroids. The in vitro efficacy of these drug classes was successfully validated in additional primary KMT2A-rearranged infant ALL samples (n = 7) and KMT2A-rearranged ALL cell line models (n = 5). Based on literature studies, most of the identified drugs remarkably appeared to lead to activation of p53 signaling. In line with this notion, subsequent experiments showed that forced expression of wild-type p53 in KMT2A-rearranged ALL cells rapidly led to apoptosis induction. We conclude that KMT2A-rearranged infant ALL cells are vulnerable to p53 activation, and that drug-induced p53 activation may represent an essential condition for successful treatment results. Moreover, the present study provides an attractive collection of approved drugs that are highly effective against KMT2A-rearranged infant ALL cells while showing far less toxicity towards non-leukemic bone marrow, urging further (pre)clinical testing.

2.
Leukemia ; 36(1): 58-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304246

RESUMO

Infants with MLL-rearranged infant acute lymphoblastic leukemia (MLL-r iALL) undergo intense therapy to counter a highly aggressive malignancy with survival rates of only 30-40%. The majority of patients initially show therapy response, but in two-thirds of cases the leukemia returns, typically during treatment. The glucocorticoid drug prednisone is established as a major player in the treatment of leukemia and the in vivo response to prednisone monotreatment is currently the best indicator of risk for MLL-r iALL. We used two different single-cell RNA sequencing technologies to analyze the expression of a prednisone-dependent signature, derived from an independent study, in diagnostic bone marrow and peripheral blood biopsies. This allowed us to classify individual leukemic cells as either resistant or sensitive to treatment and show that quantification of these two groups can be used to better predict the occurrence of future relapse in individual patients. This work also sheds light on the nature of the therapy-resistant subpopulation of relapse-initiating cells. Leukemic cells associated with high relapse risk are characterized by basal activation of glucocorticoid response, smaller size, and a quiescent gene expression program with cell stemness properties. These results improve current risk stratification and elucidate leukemic therapy-resistant subpopulations at diagnosis.


Assuntos
Biomarcadores Tumorais/genética , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Recidiva Local de Neoplasia/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Análise de Célula Única/métodos , Transcriptoma , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Regulação Leucêmica da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Recidiva Local de Neoplasia/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
3.
Biomedicines ; 9(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201500

RESUMO

Acute lymphoblastic leukemia (ALL) in infants (<1 year of age) remains one of the most aggressive types of childhood hematologic malignancy. The majority (~80%) of infant ALL cases are characterized by chromosomal translocations involving the MLL (or KMT2A) gene, which confer highly dismal prognoses on current combination chemotherapeutic regimens. Hence, more adequate therapeutic strategies are urgently needed. To expedite clinical transition of potentially effective therapeutics, we here applied a drug repurposing approach by performing in vitro drug screens of (mostly) clinically approved drugs on a variety of human ALL cell line models. Out of 3685 compounds tested, the alkaloid drug Camptothecin (CPT) and its derivatives 10-Hydroxycamtothecin (10-HCPT) and 7-Ethyl-10-hydroxycamtothecin (SN-38: the active metabolite of the drug Irinotecan) appeared most effective at very low nanomolar concentrations in all ALL cell lines, including models of MLL-rearranged ALL (n = 3). Although the observed in vitro anti-leukemic effects of Camptothecin and its derivatives certainly were not specific to MLL-rearranged ALL, we decided to further focus on this highly aggressive type of leukemia. Given that Irinotecan (the pro-drug of SN-38) has been increasingly used for the treatment of various pediatric solid tumors, we specifically chose this agent for further pre-clinical evaluation in pediatric MLL-rearranged ALL. Interestingly, shortly after engraftment, Irinotecan completely blocked leukemia expansion in mouse xenografts of a pediatric MLL-rearranged ALL cell line, as well as in two patient-derived xenograft (PDX) models of MLL-rearranged infant ALL. Also, from a more clinically relevant perspective, Irinotecan monotherapy was able to induce sustainable disease remissions in MLL-rearranged ALL xenotransplanted mice burdened with advanced leukemia. Taken together, our data demonstrate that Irinotecan exerts highly potent anti-leukemia effects against pediatric MLL-rearranged ALL, and likely against other, more favorable subtypes of childhood ALL as well.

4.
Mol Cancer Ther ; 17(8): 1705-1716, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29748211

RESUMO

MLL-rearranged acute lymphoblastic leukemia (ALL) occurring in infants is a rare but very aggressive leukemia, typically associated with a dismal prognosis. Despite the development of specific therapeutic protocols, infant patients with MLL-rearranged ALL still suffer from a low cure rate. At present, novel therapeutic approaches are urgently needed. Recently, the use of small molecule inhibitors targeting the epigenetic regulators of the MLL complex emerged as a promising strategy for the development of a targeted therapy. Herein, we have investigated the effects of bromodomain and extra-terminal (BET) function abrogation in a preclinical mouse model of MLL-AF4+ infant ALL using the BET inhibitor I-BET151. We reported that I-BET151 is able to arrest the growth of MLL-AF4+ leukemic cells in vitro, by blocking cell division and rapidly inducing apoptosis. Treatment with I-BET151 in vivo impairs the leukemic engraftment of patient-derived primary samples and lower the disease burden in mice. I-BET151 affects the transcriptional profile of MLL-rearranged ALL through the deregulation of BRD4, HOXA7/HOXA9, and RUNX1 gene networks. Moreover, I-BET151 treatment sensitizes glucocorticoid-resistant MLL-rearranged cells to prednisolone in vitro and is more efficient when used in combination with HDAC inhibitors, both in vitro and in vivo Given the aggressiveness of the disease, the failure of the current therapies and the lack of an ultimate cure, this study paves the way for the use of BET inhibitors to treat MLL-rearranged infant ALL for future clinical applications. Mol Cancer Ther; 17(8); 1705-16. ©2018 AACR.


Assuntos
Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Mutantes , Camundongos SCID , Transcriptoma
5.
Eur J Cancer ; 50(9): 1665-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24703900

RESUMO

AIM OF THE STUDY: Resistance to glucocorticoids (GCs) remains a major problem in the treatment of infants with acute lymphoblastic leukaemia (ALL) carrying Mixed Lineage Leukaemia (MLL) translocations. Despite intensive research, the mechanism(s) underlying GC resistance remain poorly understood. Recent studies suggested an important role for the pro-survival BCL-2 family member MCL1 in GC resistance in MLL-rearranged ALL. METHODS: We exposed GC-resistant MLL-rearranged SEMK2 cells to potent MCL1-inhibiting agents, including gossypol, AT-101, rapamycin, SU9516 and obatoclax (GX15-070) and determined GC sensitisation using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays. Using Western blotting we analysed the protein expression of most BCL-2 family members in MLL-rearranged SEMK2 cells after treatment with potent MCL-1 inhibiting agents. RESULTS: Only gossypol and its synthetic analogue AT-101 induced GC sensitivity in MLL-rearranged ALL cells. Remarkably, the GC-sensitising effects of gossypol and AT-101 appeared not to be mediated by down-regulation MCL1 or other anti-apoptotic BCL-2 family members, but rather involved up-regulation of multiple pro-apoptotic BCL-2 family members, in particular that of BIM and BID. CONCLUDING REMARKS: In conclusion, gossypol and AT-101 induce GC sensitivity in MLL-rearranged ALL cells, most likely mediated by the activation of BID and BIM without the necessity to down-regulate anti-apoptotic BCL-2 family members like MCL1. Hence, co-administration of either gossypol or AT-101 during GC treatment of GC-resistant MLL-rearranged ALL patients may overcome GC resistance and improve prognosis in this high-risk childhood leukaemia.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glucocorticoides/uso terapêutico , Gossipol/análogos & derivados , Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prednisolona/uso terapêutico , Antibióticos Antineoplásicos/farmacologia , Apoptose/genética , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ordem dos Genes/genética , Gossipol/farmacologia , Humanos , Lactente , Leucemia Aguda Bifenotípica/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sirolimo/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA