RESUMO
Considering the urgent need for alternative biorefinery schemes based on sustainable development, this review aims to summarize the state-of-the-art in the use of deep eutectic solvent pretreatment to fractionate lignocellulose, with a focus on lignin recovery. For that, the key parameters influencing the process are discussed, as well as various strategies to enhance this pretreatment efficiency are explored. Moreover, this review describes the challenges and opportunities associated with the valorization of extraction-derived streams and highlights recent advancements in solvent recovery techniques. Furthermore, the utilization of computational models for process design and optimization is introduced, as the initial attempts at the economic and environmental assessment of this lignocellulosic bioprocess based on deep eutectic solvents. Overall, this review offers a comprehensive perspective on the recent advances in this emerging field and serves as a foundation for further research on the potential integration of deep eutectic pretreatment in sustainable multi-product biorefinery schemes.
Assuntos
Solventes Eutéticos Profundos , Lignina , Biomassa , Solventes , HidróliseRESUMO
Microwave-assisted autohydrolysis is an environmentally friendly intensification technology that permits the selective solubilization of hemicelluloses in form of oligosaccharides in a short time and with low energy consumption. The purpose of this work was to evaluate the suitability of microwave-assisted autohydrolysis to produce oligosaccharides and phenolics with potential prebiotic and antioxidant activities from Robinia pseudoacacia wood. The influence of treatment time (0-30 min) and temperature (200-230 °C) on oligosaccharide production was studied and conditions of 230 °C and 0.25 min resulted in maximum content of xylooligosaccharides (7.69 g XO/L) and more efficient energy consumption. Furthermore, under those conditions, liquors showed high contents of phenols (80.28 mg GAE/g of RW) and flavonoids (44.51 RE/g) with significant antioxidant activities (112.07 and 102.30 mg TE/g, measured by ABTS and FRAP tests, respectively). Additionally, the solubilized hemicelluloses were structurally characterized by HPAEC-PAD, MALDI-TOF-MS, FTIR and TGA/DSC, and HPLC-ESI-MS analysis allowed the tentative identification of 17 phytochemicals.
Assuntos
Robinia , Madeira , Micro-Ondas , Antioxidantes , Fenóis , Oligossacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
The industrial processing of avocado to extract oil, and produce guacamole or sauces generates enormous quantities of peels and seeds (around 2 million tons worldwide in 2019) without commercially valuable applications. However, various studies have suggested the presence of a wide range of interesting compounds in the composition of these by-products. This review depicts a thorough outline of the capacity of avocado residues to be converted into a portfolio of commodities that can be employed in sectors such as the food, cosmetics, pharmaceuticals, environment, and energy industries. Therefore, a novel biorefinery strategy to valorize avocado-processing residues to obtain a polyphenolic extract, pectooligosaccharides, and succinic acid was presented. Additionally, the prospects and challenges facing a biorefinery based on the valorization of avocado residues are presented, particularly its techno-economic feasibility on an industrial scale, aiming for a resource-efficient circular bio-economy.
Assuntos
Persea , Persea/química , Sementes/química , IndústriasRESUMO
The development of lignocellulosic biorefineries requires a first stage of pretreatment which enables the efficient valorization of all fractions present in this renewable material. In this sense, this review aims to show the main advantages of hydrothermal treatment as a first step of a biorefinery infrastructure using hardwood as raw material, as well as, main drawback to overcome. Hydrothermal treatment of hardwood highlights for its high selectivity for hemicelluloses solubilization as xylooligosaccharides (XOS). Nevertheless, the suitable conditions for XOS production are inadequate to achieve an elevate cellulose to glucose conversion. Hence, several strategies namely the combination of hydrothermal treatment with delignification process, in situ modification of lignin and the mixture with another renewable resources (concretely, seaweeds, and by-products generated in the food industry with high sugar content) were pinpointed as promising alternative to increase the final ethanol concentration coupled with XOS recovery in the hydrolysate.
Assuntos
Lignina , Oligossacarídeos , Celulose , Glucuronatos , HidróliseRESUMO
Hydrothermal processes are an attractive clean technology and cost-effective engineering platform for biorefineries based in the conversion of biomass to biofuels and high-value bioproducts under the basis of sustainability and circular bioeconomy. The deep and detailed knowledge of the structural changes by the severity of biomasses hydrothermal fractionation is scientifically and technological needed in order to improve processes effectiveness, reactors designs, and industrial application of the multi-scale target compounds obtained by steam explosion and liquid hot water systems. The concept of the severity factor [log10 (Ro)] established>30 years ago, continues to be a useful index that can provide a simple descriptor of the relationship between the operational conditions for biomass fractionation in second generation of biorefineries. This review develops a deep explanation of the hydrothermal severity factor based in lignocellulosic biomass fractionation with emphasis in research advances, pretreatment operations and the applications of severity factor kinetic model.
Assuntos
Biocombustíveis , Vapor , Biomassa , Fracionamento Químico , Lignina , ÁguaRESUMO
Avocado industrial processing generates huge quantities of residues that are currently wasted without any valuable commercial application. This work deals with autohydrolysis of Avocado peel (AP) for the concomitant recovery of oligosaccharides and polyphenolics. Temperature of 150⯰C allowed the highest recovery of oligosaccharides (14.3â¯g oligosaccharides/100â¯g AP) and high recovery of antioxidant phenolics (3.48â¯g gallic acid equivalents/100â¯g AP and 10.80â¯g Trolox equivalents/100â¯g AP measured with ABTSâ+ assay). The liquor obtained at this temperature was characterized by TGA and FTIR to study its thermal stability and functional groups. UHPLC-TOF MS analysis of an ethyl acetate extract of AP liquor enabled the tentative identification of 43 compounds, belonging to various metabolite families, including flavonoids, phenolic acids, organic acids, lignans and fatty acids. These findings demonstrated that autohydrolysis of AP is a suitable technology to obtain bioactive agents with potential uses in food and cosmetic industries.
Assuntos
Persea , Antioxidantes , Flavonoides , Humanos , Oligossacarídeos , FenóisRESUMO
This study deals with the multiproduct valorization of the invasive macroalgae Sargassum muticum within a green biorefinery concept using microwave hydrothermal treatment. Temperatures of 160 and 180 °C for 0-60 min (severities 1.62-3.54) were evaluated, allowing a recovery of a liquid phase rich in fucoidan-derived compounds (up to 4.81 g/L), oligomers and phenolics with antioxidant capacity (up to 2.85 g TE/L by ABTS assay), and a high-enzymatically susceptible solid (glucan to glucose conversion 76-100% in 9 h) suitable for bioethanol production (20.5 g/L in 18 h, corresponding to 96% ethanol yield). Moreover, energy consumption of the pretreatments' temperature-time binomial was evaluated showing significant differences, demonstrating the advantages of microwave as alternative heating pretreatment.
Assuntos
Sargassum , Alga Marinha , Etanol , Glucose , Micro-OndasRESUMO
Microwave hydrothermal treatment (MHT), a novel advanced technology, was proposed for the fractionation of Paulownia wood (PW) at temperatures ranging 200-230 °C and residence times of 0-50 min, corresponding to severities of 2.93-4.70. This procedure allowed 80% of xylan recovery as xylooligosaccharides and an average of 95% cellulose recovery in the pretreated PW biomass, showing the selectivity of the treatment, that was also compared to conduction-convection heating autohydrolysis. Finally, a kinetic model was proposed for the prediction of PW fractionation using MHT, with the ultimate goal of being applied to a wide range of feedstocks and minimizing the number of parameters used. For that, two strategies were approached, allowing the reduction of 80 to 34 parameters, without significant influence in the kinetic fitting. To the best of our knowledge, this is the first kinetic modelization of MHT of PW, taking into account all the lignocellulosic fractions.
Assuntos
Micro-Ondas , Madeira , Biomassa , Celulose , Fracionamento Químico , HidróliseRESUMO
In this work, valorization of Paulownia wood (PW) was proposed following several process configurations for biofuels and value-added compounds production. Firstly, autohydrolysis and ethanol-organosolv strategies were assessed separately for the fractionation of PW to enhance the enzymatic digestibility of cellulose. A third strategy focused on a sequential process (autohydrolysis and organosolv) was explored. Two temperatures were selected for the first stage of the combined process. High concentration of oligosaccharides (26.29 g/L) and high concentration of degradation products (17.21 g/L) were obtained at 210 and 230 °C, respectively. The solids obtained from both pretreatments were subjected to organosolv delignification (200 °C, 3 h and 50% ethanol) achieving delignification of 58 and 30% for the autohydrolyzed biomass at 210 °C and 230 °C, respectively. The combined process resulted in susceptible biomass able to produce 64 g/L of ethanol. Therefore, the strategies explored in this work open the possibility to build a refinery around Paulownia wood.
Assuntos
Lignina , Madeira , Celulose , Etanol , HidróliseRESUMO
Concerns about fossil fuels depletion has led to seek for new sources of energy. The use of marine biomass (seaweed) to produce biofuels presents widely recognized advantages over terrestrial biomasses such as higher production ratio, higher photosynthetic efficiency or carbon-neutral emissions. In here, interesting seaweed sources as a whole or as a residue from seaweed processing industries for biofuel production were identified and their diverse composition and availability compiled. In addition, the pretreatments used for seaweed fractionation were thoroughly revised as this step is pivotal in a seaweed biorefinery for integral biomass valorization and for enabling biomass-to-biofuel economic feasibility processes. Traditional and emerging technologies were revised, with particular emphasis on green technologies, relating pretreatment not only with the type of biomass but also with the final target product(s) and yields. Current hurdles of marine biomass-to-biofuel processes were pinpointed and discussed and future perspectives on the development of these processes given.
Assuntos
Biocombustíveis , Alga Marinha , BiomassaRESUMO
This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials.
Assuntos
Biocombustíveis , Calefação , Micro-Ondas , Convecção , Etanol , FermentaçãoRESUMO
The aim of this work was the evaluation of lime pretreatment combined or not with previous step of autohydrolysis for oat straw valorization. Under selected conditions of lime pretreatment, 96% of glucan and 77% of xylan were recovered and 42% of delignification was achieved. Xylose fermentation to ethanol by metabolic engineered Saccharomyces cerevisiae (MEC1133) strain improved the ethanol production by 22% achieving 41g/L. Alternatively, first step of autohydrolysis (S0=4.22) allowed a high oligosaccharides recovery (68%) and subsequent lime pretreatment attained a 57% of delignification and 99% of glucan to glucose conversion. Oat straw processed by autohydrolysis and lime pretreatment reached the maximal ethanol concentration (50g/L). Both strategies led to oat straw valorization into bioethanol, oligosaccharides and lignin indicating that these pretreatments are adequate as a first stage within an oat straw biorefinery.
Assuntos
Álcalis/química , Avena/química , Etanol/metabolismo , Álcalis/metabolismo , Avena/metabolismo , Compostos de Cálcio/química , Fermentação , Glucose/metabolismo , Hidrólise , Lignina/metabolismo , Engenharia Metabólica , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Óxidos/química , Polissacarídeos/química , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismoRESUMO
Bark from Pinus pinaster is one of the most abundant forestry wastes in Europe, and among the proposed technologies for its reutilization, the removal of heavy metals from wastewater has been gaining increasing attention. In this work, we have studied the performance of pine bark for heavy metal biosorption on competitive systems. Pb, Cu, Ni, Zn and Cd sorption and desorption at equilibrium were studied in batch experiments, whereas transport was studied in column experiments. Batch experiments were performed adding simultaneously different concentrations (0.08-3.15mM) of two or more metals in solution to pine bark samples. Column experiments were performed with 10mM solutions of two metals or a 5mM solution of the five metals. In general, the results under competitive conditions were different to those obtained in monoelemental experiments. The multi-metal batch experiments showed the adsorption sequence Pb≈Cu>Cd>Zn>Ni for lower metal doses, Pb>Cu>Cd>Zn>Ni for intermediate doses, and Pb>Cu>Cd≈Zn≈Ni for high metal doses. Desorption followed the sequence Pb
Assuntos
Metais Pesados/metabolismo , Pinus/metabolismo , Casca de Planta/metabolismo , Adsorção , Transporte Biológico , Cádmio/metabolismo , Cádmio/farmacocinética , Cobre/metabolismo , Cobre/farmacocinética , Europa (Continente) , Agricultura Florestal , Chumbo/metabolismo , Chumbo/farmacocinética , Metais Pesados/análise , Metais Pesados/farmacocinética , Níquel/metabolismo , Níquel/farmacocinética , Resíduos , Zinco/metabolismo , Zinco/farmacocinéticaRESUMO
Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified.
Assuntos
Eucalyptus/química , Furaldeído/síntese química , Líquidos Iônicos/química , Madeira/químicaRESUMO
In the present work, the hydrothermal valorization of an abundant agricultural residue has been studied in order to look for high added value applications by means of hydrothermal pretreatment followed by fed-batch simultaneous saccharification and fermentation, to obtain oligomers and sugars from autohydrolysis liquors and bioethanol from the solid phase. Non-isothermal autohydrolysis was applied to barley straw, leading to a solid phase with about a 90% of glucan and lignin and a liquid phase with up to 168 g kg(-1) raw material valuable hemicellulose-derived compounds. The solid phase showed a high enzymatic susceptibility (up to 95%). It was employed in the optimization study of the fed-batch simultaneous saccharification and fermentation, carried out at high solids loading, led up to 52 g ethanol/L (6.5% v/v).
Assuntos
Agricultura , Biocombustíveis , Etanol/metabolismo , Temperatura Alta , Oligossacarídeos/biossíntese , FermentaçãoRESUMO
This work provides an assessment on the fractionation of Eucalyptus globulus wood by sequential stages of autohydrolysis (to cause the solubilization of hemicelluloses) and organosolv pulping (to dissolve lignin, leaving solids enriched in cellulose). With this approach, valuable products (hemicellulose-derived saccharides, sulphur-free lignin fragments and cellulosic substrates with low contents of residual hemicelluloses) are obtained in separate streams, according to the biomass refinery approach. Autohydrolysis was carried out under optimized operational conditions, and organosolv pulping was performed using uncatalyzed ethanol-water solutions. The effects of the most influential operational variables (autohydrolysis severity, delignification temperature and ethanol concentration in the organosolv stage) on solid yield, solid composition, cellulose susceptibility and recovery of the various fractions was assessed using statistical methods, which enabled the identification of the most favourable operational conditions.
Assuntos
Eucalyptus/química , Lignina/isolamento & purificação , Madeira , Celulose/química , HidróliseRESUMO
Eucalyptus globulus wood samples were pretreated in aqueous media under non-isothermal conditions to reach maximal temperatures (T(MAX)) in the range 195-250 degrees C, in order to assess the effects of the pre-treatment severity on the fractionation of wood and on the susceptibility of processed samples toward enzymatic hydrolysis. Both the fraction of cellulose susceptible to hydrolysis and the hydrolysis rate increased with the severity of the pre-treatments, but the overall glucose yield decreased for substrates pretreated at T(MAX) above 220 degrees C owing to cellulose losses. Using substrates pretreated at T(MAX)=220 degrees C, up to 94% of polysaccharides were recovered in the hydrolysis media as mono- or oligo-saccharides. High glucose to ethanol conversions were obtained operating at low enzyme charges in Simultaneous Saccharification and Fermentation mode.
Assuntos
Biocombustíveis , Celulase/metabolismo , Etanol/metabolismo , Eucalyptus/química , Eucalyptus/microbiologia , Trichoderma/enzimologia , Água/química , beta-Glucosidase/metabolismo , Temperatura Alta , HidróliseRESUMO
For the purpose of hydrolysing hemicelluloses to oligomers and monomers, Sesbania grandiflora samples were subjected to isothermal autohydrolysis in the temperatures ranging from 145 degrees C to 190 degrees C, using a solid to liquid ratio of 8 and reaction times up to 7.5 h. Kinetic models based on sequential pseudo-homogeneous first order Kinetics with Arrhenius type temperature dependence were employed for describing the time course of the main hemicelluloses compounds and their degradation products. The hydrothermal treatment results show that Sesbania grandiflora can be employed as an alternative raw material for the production of XOS leading to high concentrations of XOS (14.1 g/L in the experiment carried out at 190 degrees C and 0.1 h) and xylan to XOS conversion (62.6% in the experiment carried out at 190 degrees C and 6 min). The model proposed provides a satisfactory interpretation of the experimental data obtained in the hydrothermal treatments of this study.
Assuntos
Fracionamento Químico/métodos , Sesbania/química , Temperatura , Água/química , Furaldeído/análogos & derivados , Furaldeído/análise , Hidrólise , Cinética , Modelos Químicos , Oligossacarídeos/análise , Polissacarídeos/metabolismo , Solubilidade , Fatores de Tempo , Xilose/análiseRESUMO
The use of cellulosic biosludges generated in a Kraft pulp mill was investigated as substrate for lactic acid production by simultaneous saccharification and fermentation (SSF). The effect of the operation mode (batch or fedbatch), the initial liquid to solid ratio (12 or 30 g/g) and the nutrient supplementation (MRS components or none) on several parameters including lactic acid concentration, volumetric productivity and product yields, were evaluated. When the operation was carried out in fedbatch mode with nutrient supplementation and using a LSR(0)=12 g/g, a broth containing 42 g/L was obtained after 48 h with a volumetric productivity of 0.87 g/L h and a product yield of 37.8 g lactic acid/100 g biosludges. In a similar experiment carried out without nutrient supplementation, a lactic acid concentration of 39.4 g/L was obtained after 48 h with a volumetric productivity of 0.82 g/L h and a product yield of 35.5 g L-lactic acid/100 g biosludges.
Assuntos
Biotecnologia/métodos , Celulose/química , Ácido Láctico/química , Esgotos , Ácido Acético/análise , Reatores Biológicos , Meios de Cultura , Fermentação , Glucose/análise , Hidrólise , Resíduos Industriais , Ácido Láctico/análise , Lignina/química , Polissacarídeos/química , Fatores de Tempo , Xilose/análiseRESUMO
Eucalyptus globulus wood samples were reacted in aqueous media (hydrothermal treatments) at 160 degrees C for 30-66 min. Liquors from the several experiments were analyzed by spectrophotometry, high-performance liquid chromatography, or gas chromatography-mass spectrometry for monosaccharides, oligosaccharides, oligosaccharide substituents (arabinose moieties, uronic acids, and acetyl groups), acetic acid, furfural, hydroxymethylfurfural, and dichloromethane-soluble compounds. Individual components of this latter fraction were identified and quantified. The molecular weight distribution of oligosaccharides was studied by high-performance size exclusion chromatography. The kinetics of xylan conversion into high-, medium-, and low-molecular-weight products was assessed in terms of the severity factor and by pseudohomogeneous kinetic models.