Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15485, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726379

RESUMO

Detection and differentiation of brown fat in humans poses several challenges, as this tissue is sparse and often mixed with white adipose tissue. Non-invasive detection of beige fat represents an even greater challenge as this tissue is structurally and functionally more like white fat than brown fat. Here we used positron emission tomography with 18F-fluorodeoxyglucose, computed tomography, xenon-enhanced computed tomography, and dynamic contrast-enhanced ultrasound, to non-invasively detect functional and structural changes associated with the browning process of inguinal white fat, induced in mice by chronic stimulation with the ß3-adrenergic receptor agonist CL-316243. These studies reveal a very heterogeneous increase in baseline tissue radiodensity and xenon-enhanced radiodensity, indicative of both an increase in adipocytes water and protein content as well as tissue perfusion, mostly in regions that showed enhanced norepinephrine-stimulated perfusion before CL-316243 treatment. No statistically significant increase in 18F-fluorodeoxyglucose uptake or norepinephrine-stimulated tissue perfusion were observed in the mice after the CL-316243 treatment. The increase in tissue-water content and perfusion, along with the negligible increase in the tissue glucose uptake and norepinephrine-stimulated perfusion deserve more attention, especially considering the potential metabolic role that this tissue may play in whole body metabolism.


Assuntos
Adipócitos , Fluordesoxiglucose F18 , Humanos , Animais , Camundongos , Perfusão , Tecido Adiposo Branco/diagnóstico por imagem , Norepinefrina
2.
Sci Rep ; 12(1): 21383, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496470

RESUMO

Brown adipose tissue (BAT) is a fat tissue specialized in heat production (non-shivering thermogenesis) and used by mammals to defend core body temperature when exposed to cold. Several studies have shown that during non-shivering thermogenesis the increase in BAT oxygen demand is met by a local and specific increase in tissue's blood flow. While the vasculature of BAT has been extensively studied postmortem in rodents using histology, optical and CT imaging techniques, vasculature changes during stimulation of non-shivering thermogenesis have never been directly detected in vivo. Here, by using computed tomography (CT) angiography with gold nanoparticles we investigate, non-invasively, changes in BAT vasculature during adrenergic stimulation of non-shivering thermogenesis by norepinephrine, a vasoconstrictor known to mediate brown fat heat production, and by CL 316,243, a specific ß3-adrenergic agonist also known to elicit BAT thermogenesis in rodents. We found that while CL 316,243 causes local vasodilation in BAT, with little impact on the rest of the vasculature throughout the body, norepinephrine leads to local vasodilation in addition to peripheral vasoconstriction. As a result, a significantly greater relative increase in BAT perfusion is observed following the injection of NE compared to CL. This study demonstrates the use of in vivo CT angiography as an effective tool in assessing vascular reactivity in BAT both qualitatively and quantitatively in preclinical studies.


Assuntos
Tecido Adiposo Marrom , Nanopartículas Metálicas , Animais , Camundongos , Tecido Adiposo Marrom/fisiologia , Adrenérgicos , Ouro , Termogênese/fisiologia , Temperatura Baixa , Norepinefrina/farmacologia , Mamíferos
3.
Obesity (Silver Spring) ; 30(9): 1831-1841, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35912825

RESUMO

OBJECTIVE: This study aimed to validate xenon-enhanced computed tomography (XECT) for the detection of brown adipose tissue (BAT) and to use XECT to assess differences in BAT distribution and perfusion between lean, obese, and diabetic nonhuman primates (NHPs). METHODS: Whole-body XECT imaging was performed in anesthetized rhesus and vervet monkeys during adrenergic stimulation of BAT thermogenesis. In XECT images, BAT was identified as fat tissue that, during xenon inhalation, underwent significant radiodensity enhancement compared with subcutaneous fat. To measure BAT blood flow, BAT radiodensity enhancement was measured over time on the six computed tomography scans acquired during xenon inhalation. Postmortem immunohistochemical staining was used to confirm imaging findings. RESULTS: XECT was able to correctly identify all BAT depots that were confirmed at necropsy, enabling construction of the first comprehensive anatomical map of BAT in NHPs. A significant decrease in BAT perfusion was found in diabetic animals compared with obese animals and healthy animals, as well as absence of axillary BAT and significant reduction of supraclavicular BAT in diabetic animals compared with obese and lean animals. CONCLUSIONS: The use of XECT in NHP models of obesity and diabetes allows the analysis of the impact of metabolic status on BAT mass and perfusion.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus , Tecido Adiposo Marrom/metabolismo , Animais , Chlorocebus aethiops , Diabetes Mellitus/diagnóstico por imagem , Diabetes Mellitus/metabolismo , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Perfusão , Primatas , Tomografia Computadorizada por Raios X/métodos , Xenônio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA