Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Clin Exp Metastasis ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066243

RESUMO

Ketogenic diets (KDs) can improve the well-being and quality of life of breast cancer patients. However, data on the effects of KDs on mammary tumors are inconclusive, and the influence of KDs on metastasis in general remains to be investigated. We therefore assessed the impact of a KD on growth and metastasis of triple negative murine 4T1 mammary tumors, and on the progression of luminal breast tumors in an autochthonous MMTV-PyMT mouse model. We found that KD did not influence the metastasis of 4T1 and MMTV-PyMT mammary tumors, but impaired 4T1 tumor cell proliferation in vivo, and also temporarily reduced 4T1 primary tumor growth. Notably, the ketogenic ratio (the mass of dietary fat in relation to the mass of dietary carbohydrates and protein) that is needed to induce robust ketosis was twice as high in mice as compared to humans. Surprisingly, only female but not male mice responded to KD with a sustained increase in blood ß-hydroxybutyrate levels. Together, our data show that ketosis does not foster primary tumor growth and metastasis, suggesting that KDs can be safely applied in the context of luminal breast cancer, and may even be advantageous for patients with triple negative tumors. Furthermore, our data indicate that when performing experiments with KDs in mice, the ketogenic ratio needed to induce ketosis must be verified, and the sex of the mice should also be taken into account.

2.
Sci Rep ; 13(1): 17985, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863933

RESUMO

In diabetic nephropathy (DN), glomerular endothelial cells (GECs) and podocytes undergo pathological alterations, which are influenced by metabolic changes characteristic of diabetes, including hyperglycaemia (HG) and elevated methylglyoxal (MGO) levels. However, it remains insufficiently understood what effects these metabolic factors have on GEC and podocytes and to what extent the interactions between the two cell types can modulate these effects. To address these questions, we established a co-culture system in which GECs and podocytes were grown together in close proximity, and assessed transcriptional changes in each cell type after exposure to HG and MGO. We found that HG and MGO had distinct effects on gene expression and that the effect of each treatment was markedly different between GECs and podocytes. HG treatment led to upregulation of "immediate early response" genes, particularly those of the EGR family, as well as genes involved in inflammatory responses (in GECs) or DNA replication/cell cycle (in podocytes). Interestingly, both HG and MGO led to downregulation of genes related to extracellular matrix organisation in podocytes. Crucially, the transcriptional responses of GECs and podocytes were dependent on their interaction with each other, as many of the prominently regulated genes in co-culture of the two cell types were not significantly changed when monocultures of the cells were exposed to the same stimuli. Finally, the changes in the expression of selected genes were validated in BTBR ob/ob mice, an established model of DN. This work highlights the molecular alterations in GECs and podocytes in response to the key diabetic metabolic triggers HG and MGO, as well as the central role of GEC-podocyte crosstalk in governing these responses.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Nefropatias Diabéticas/patologia , Glomérulos Renais/patologia , Células Endoteliais/metabolismo , Óxido de Magnésio/farmacologia , Diabetes Mellitus Experimental/metabolismo , Transdução de Sinais , Camundongos Endogâmicos , Glucose/metabolismo , Apoptose
3.
Biomedicines ; 11(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37189656

RESUMO

Osteopontin (OPN) is a phosphoprotein with diverse functions in various physiological and pathological processes. OPN expression is increased in multiple cancers, and OPN within tumour tissue has been shown to promote key stages of cancer development. OPN levels are also elevated in the circulation of cancer patients, which in some cases has been correlated with enhanced metastatic propensity and poor prognosis. However, the precise impact of circulating OPN (cOPN) on tumour growth and progression remains insufficiently understood. To examine the role of cOPN, we used a melanoma model, in which we stably increased the levels of cOPN through adeno-associated virus-mediated transduction. We found that increased cOPN promoted the growth of primary tumours, but did not significantly alter the spontaneous metastasis of melanoma cells to the lymph nodes or lungs, despite an increase in the expression of multiple factors linked to tumour progression. To assess whether cOPN has a role at later stages of metastasis formation, we employed an experimental metastasis model, but again could not detect any increase in pulmonary metastasis in animals with elevated levels of cOPN. These results demonstrate that increased levels of OPN in the circulation play distinct roles during different stages of melanoma progression.

4.
Plast Reconstr Surg ; 152(1): 96e-109e, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728589

RESUMO

BACKGROUND: Over 137,000 breast reconstructions are performed annually by American Society of Plastic Surgeons (ASPS) members. Vascularized flaps and avascular lipofilling each account for over 33,000 autologous reconstructions. Although clinical and experimental observations suggest biologic differences with diverging effects on locoregional tumor control, comparative animal models are lacking. The authors standardized existing techniques in immunocompetent mice, laying the foundation for in vivo models of autologous breast reconstruction combinable with orthotopic tumor implantations. METHODS: Twenty-five groin flaps and 39 fat grafts were transferred in female BALB/c-mice. Adipocytes were tracked via Hoechst-Calcein-DiI staining ( n = 2 per group), and postoperative volume retentions were compared via magnetic resonance imaging ( n = 3 per group) on days 1, 11, 21, and 31. Proliferation indices, microvessel densities, tissue hypoxia, and macrophage infiltrates were compared via Ki67, CD31, pimonidazole, and hematoxylin-eosin staining on days 5, 10, 15, 20, and 30 ( n = 4 per group). RESULTS: Viable adipocytes were present in both groups. Graft volumes plateaued at 42.7 ± 1.2% versus 81.8 ± 4.0% of flaps ( P < 0.001). Initially, grafts contained more hypoxic cells (day 5: 15.192 ± 1.249 versus 1.157 ± 192; P < 0.001), followed by higher proliferation (day 15: 25.2 ± 1.0% versus 0.0 ± 0.0%; P < 0.001), higher microvessel numbers (day 30: 307.0 ± 13.2 versus 178.0 ± 10.6; P < 0.001), and more pronounced macrophage infiltrates (graded 3 versus 2; P < 0.01). CONCLUSION: This comparative murine pilot study of vascularized flaps versus avascular lipofilling suggests differences in volume retention, proliferation, angiogenesis, hypoxia, and inflammation. CLINICAL RELEVANCE STATEMENT: The biological differences of fat grafting versus flap transfer are not fully understood because no single comparative experimental model has been established to date. The authors present the first comparative small animal model of both techniques, which will allow the gaining of deeper insights into their biological effects.


Assuntos
Tecido Adiposo , Mamoplastia , Feminino , Animais , Camundongos , Tecido Adiposo/transplante , Projetos Piloto , Adipócitos/transplante , Mamoplastia/métodos , Proliferação de Células
5.
Matrix Biol ; 109: 173-191, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35405271

RESUMO

Hyaluronan (HA) is an extracellular matrix component that regulates a variety of physiological and pathological processes. The function of HA depends both on its overall amount and on its size, properties that are controlled by HA synthesizing and degrading enzymes. The lack of inhibitors that can specifically block individual HA degrading enzymes has hampered attempts to understand the contribution of individual hyaluronidases to different physiological and pathological processes. CEMIP is a recently discovered hyaluronidase that cleaves HA through mechanisms and under conditions that are distinct from those of other hyaluronidases such as HYAL1 or HYAL2. The role of its hyaluronidase activity in physiology and disease is poorly understood. Here, we characterized a series of sulfated HA derivatives (sHA) with different sizes and degrees of sulfation for their ability to inhibit specific hyaluronidases. We found that highly sulfated sHA derivatives potently inhibited CEMIP hyaluronidase activity. One of these compounds, designated here as sHA3.7, was characterized further and shown to inhibit CEMIP with considerable selectivity over other hyaluronidases. Inhibition of CEMIP with sHA3.7 in fibroblasts, which are the main producers of HA in the interstitial matrix, increased the cellular levels of total and high molecular weight HA, while decreasing the fraction of low molecular weight HA fragments. Genetic deletion of CEMIP in mouse embryonic fibroblasts (MEFs) produced analogous results and confirmed that the effects of sHA3.7 on HA levels were mediated by CEMIP inhibition. Importantly, both CEMIP deletion and its inhibition by sHA3.7 suppressed fibroblast proliferation, while promoting differentiation into myofibroblasts, as reflected in a lack of CEMIP in myofibroblasts within skin wounds in experimental mice. By contrast, adipogenic and osteogenic differentiation were attenuated upon CEMIP loss or inhibition. Our results demonstrate the importance of CEMIP for the HA metabolism, proliferation and differentiation of fibroblasts, and suggest that inhibition of CEMIP with sulfated HA derivatives such as sHA3.7 has potential utility in pathological conditions that are dependent on CEMIP function.


Assuntos
Ácido Hialurônico , Hialuronoglucosaminidase , Animais , Proliferação de Células , Fibroblastos/metabolismo , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Hialuronoglucosaminidase/metabolismo , Camundongos , Osteogênese , Sulfatos/metabolismo , Sulfatos/farmacologia
6.
Cancer Lett ; 533: 215600, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181478

RESUMO

ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis in a variety of cancers, and can promote cell migration, invasion and metastasis. Although amplification and expression of ASAP1 has been associated with poor survival in breast cancer, we found that in the autochthonous MMTV-PyMT model of luminal breast cancer, ablation of ASAP1 resulted in an earlier onset of tumor initiation and increased metastasis. This was due to tumor cell-intrinsic effects of ASAP1 deletion, as ASAP1 deficiency in tumor, but not in stromal cells was sufficient to replicate the enhanced tumorigenicity and metastasis observed in the ASAP1-null MMTV-PyMT mice. Loss of ASAP1 in MMTV-PyMT mice had no effect on proliferation, apoptosis, angiogenesis or immune cell infiltration, but enhanced mammary gland hyperplasia and tumor cell invasion, indicating that ASAP1 can accelerate tumor initiation and promote dissemination. Mechanistically, these effects were associated with a potent activation of AKT. Importantly, lower ASAP1 levels correlated with poor prognosis and enhanced AKT activation in human ER+/luminal breast tumors, validating our findings in the MMTV-PyMT mouse model for this subtype of breast cancer. Taken together, our findings reveal that ASAP1 can have distinct functions in different tumor types and demonstrate a tumor suppressive activity for ASAP1 in luminal breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Neoplasias Mamárias Experimentais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Feminino , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
J Clin Med ; 10(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830742

RESUMO

A better understanding of the process of melanoma metastasis is required to underpin the development of novel therapies that will improve patient outcomes. The use of appropriate animal models is indispensable for investigating the mechanisms of melanoma metastasis. However, reliable and practicable quantification of metastases in experimental mice remains a challenge, particularly if the metastatic burden is low. Here, we describe a qRT-PCR-based protocol that employs the melanocytic marker Trp-1 for the sensitive quantification of melanoma metastases in the murine lung. Using this protocol, we were able to detect the presence of as few as 100 disseminated melanoma cells in lung tissue. This allowed us to quantify metastatic burden in a spontaneous syngeneic B16-F10 metastasis model, even in the absence of visible metastases, as well as in the autochthonous Tg(Grm1)/Cyld-/- melanoma model. Importantly, we also observed an uneven distribution of disseminated melanoma cells amongst the five lobes of the murine lung, which varied considerably from animal to animal. Together, our findings demonstrate that the qRT-PCR-based detection of Trp-1 allows the quantification of low pulmonary metastatic burden in both transplantable and autochthonous murine melanoma models, and show that the analysis of lung metastasis in such models needs to take into account the stochastic distribution of metastatic lesions amongst the lung lobes.

8.
Oncogene ; 40(47): 6494-6512, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611309

RESUMO

Expression of the immediate-early response gene IER2 has been associated with the progression of several types of cancer, but its functional role is poorly understood. We found that increased IER2 expression in human melanoma is associated with shorter overall survival, and subsequently investigated the mechanisms through which IER2 exerts this effect. In experimental melanoma models, sustained expression of IER2 induced senescence in a subset of melanoma cells in a p53/MAPK/AKT-dependent manner. The senescent cells produced a characteristic secretome that included high levels of the extracellular phosphoglycoprotein osteopontin. Nuclear localization of the IER2 protein was critical for both the induction of senescence and osteopontin secretion. Osteopontin secreted by IER2-expressing senescent cells strongly stimulated the migration and invasion of non-senescent melanoma cells. Consistently, we observed coordinate expression of IER2, p53/p21, and osteopontin in primary human melanomas and metastases, highlighting the pathophysiological relevance of IER2-mediated senescence in melanoma progression. Together, our study reveals that sustained IER2 expression drives melanoma invasion and progression through stimulating osteopontin secretion via the stochastic induction of senescence.


Assuntos
Biomarcadores Tumorais/metabolismo , Senescência Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Melanoma/patologia , Osteopontina/metabolismo , Transativadores/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Proteínas Imediatamente Precoces/genética , Melanoma/genética , Melanoma/metabolismo , Camundongos , Invasividade Neoplásica , Osteopontina/genética , Prognóstico , Transativadores/genética , Células Tumorais Cultivadas
9.
Int J Cancer ; 147(4): 1190-1198, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31675122

RESUMO

Metastasis is a multistep process, during which circulating tumor cells traffic through diverse anatomical locations. Stable inducible marking of tumor cells in a manner that is tightly spatially and temporally controlled would allow tracking the contribution of cells passing through specific locations to metastatic dissemination. For example, tumor cells enter the lymphatic system and can form metastases in regional lymph nodes, but the relative contribution of tumor cells that traffic through the lymphatic system to the formation of distant metastases remains controversial. Here, we developed a novel genetic switch based on mild transient warming (TW) that allows cells to be marked in a defined spatiotemporal manner in vivo. Prior to warming, cells express only EGFP. Upon TW, the EGFP gene is excised and expression of mCherry is permanently turned on. We employed this system in an experimental pancreatic cancer model and used localized TW to induce the genetic switch in tumor cells trafficking through tumor-draining lymph nodes. Thereby we found that tumor cells disseminating via the lymphatics make a major contribution to the seeding of lung metastases. The inducible genetic marking system we have developed is a powerful tool for the tracking of metastasizing cells in vivo.


Assuntos
Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Células Neoplásicas Circulantes/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Linfonodos/patologia , Metástase Linfática , Sistema Linfático/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Ratos , Análise Espaço-Temporal , Proteína Vermelha Fluorescente
10.
Cell ; 179(7): 1661-1676.e19, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835038

RESUMO

Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage. VIDEO ABSTRACT.


Assuntos
Anticorpos/uso terapêutico , Aprendizado Profundo , Diagnóstico por Computador/métodos , Quimioterapia Assistida por Computador/métodos , Neoplasias/patologia , Animais , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Metástase Neoplásica , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Software , Microambiente Tumoral
11.
Sci Rep ; 9(1): 19220, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31822766

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
J Exp Med ; 216(6): 1377-1395, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31015297

RESUMO

Although abnormal nuclear structure is an important criterion for cancer diagnostics, remarkably little is known about its relationship to tumor development. Here we report that loss of lamin B1, a determinant of nuclear architecture, plays a key role in lung cancer. We found that lamin B1 levels were reduced in lung cancer patients. Lamin B1 silencing in lung epithelial cells promoted epithelial-mesenchymal transition, cell migration, tumor growth, and metastasis. Mechanistically, we show that lamin B1 recruits the polycomb repressive complex 2 (PRC2) to alter the H3K27me3 landscape and repress genes involved in cell migration and signaling. In particular, epigenetic derepression of the RET proto-oncogene by loss of PRC2 recruitment, and activation of the RET/p38 signaling axis, play a crucial role in mediating the malignant phenotype upon lamin B1 disruption. Importantly, loss of a single lamin B1 allele induced spontaneous lung tumor formation and RET activation. Thus, lamin B1 acts as a tumor suppressor in lung cancer, linking aberrant nuclear structure and epigenetic patterning with malignancy.


Assuntos
Carcinogênese/genética , Epigênese Genética , Lamina Tipo B/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Haploinsuficiência/genética , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gradação de Tumores , Metástase Neoplásica , Fenótipo , Complexo Repressor Polycomb 2/metabolismo , Proto-Oncogene Mas , Transdução de Sinais , Regulação para Cima/genética
14.
Bioorg Chem ; 82: 290-305, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30396063

RESUMO

Approximately 60% of human cancers exhibit enhanced activity of ERK1 and ERK2, reflecting their multiple roles in tumor initiation and progression. Acquired drug resistance, especially mechanisms associated with the reactivation of the MAPK (RAF/MEK/ERK) pathway represent a major challenge to current treatments of melanoma and several other cancers. Recently, targeting ERK has evolved as a potentially attractive strategy to overcome this resistance. Herein, we report the design and synthesis of novel series of fused naphthofuro[3,2-c]quinoline-6,7,12-triones 3a-f and pyrano[3,2-c]quinoline-6,7,8,13-tetraones 5a,b and 6, as potential ERK inhibitors. New inhibitors were synthesized and identified by different spectroscopic techniques and X-ray crystallography. They were evaluated for their ability to inhibit ERK1/2 in an in vitro radioactive kinase assay. 3b and 6 inhibited ERK1 with IC50s of 0.5 and 0.19 µM, and inhibited ERK2 with IC50s of 0.6 and 0.16 µM respectively. Kinetic mechanism studies revealed that the inhibitors are ATP-competitive inhibitors where 6 inhibited ERK2 with a Ki of 0.09 µM. Six of the new inhibitors were tested for their in vitro anticancer activity against the NCI-60 panel of tumor cell lines. Compound 3b and 6 were the most potent against most of the human tumor cell lines tested. Moreover, 3b and 6 inhibited the proliferation of the BRAF mutant A375 melanoma cells with IC50s of 3.7 and 0.13 µM, respectively. In addition, they suppressed anchorage-dependent colony formation. Treatment of the A375 cell line with 3b and 6 inhibited the phosphorylation of ERK substrates p-90RSK and ELK-1 and induced apoptosis in a dose dependent manner. Finally, a molecular docking study showed the potential binding mode of 3b and 6 within the ATP catalytic binding site of ERK2.


Assuntos
Antineoplásicos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Naftoquinonas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/síntese química , Furanos/química , Furanos/farmacocinética , Furanos/farmacologia , GTP Fosfo-Hidrolases/genética , Humanos , Proteínas de Membrana/genética , Proteína Quinase 1 Ativada por Mitógeno/química , Estrutura Molecular , Mutação , Naftoquinonas/síntese química , Naftoquinonas/química , Naftoquinonas/farmacocinética , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas B-raf/genética , Piranos/síntese química , Piranos/química , Piranos/farmacocinética , Piranos/farmacologia , Quinolonas/síntese química , Quinolonas/química , Quinolonas/farmacocinética , Relação Estrutura-Atividade
15.
Mol Autism ; 9: 56, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443311

RESUMO

Background: Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome. Methods: The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain. Results: QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala. Conclusions: In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers.


Assuntos
Transtorno do Espectro Autista/genética , Diferenciação Celular/genética , Neurônios/citologia , Pentosiltransferases/genética , Linhagem Celular Tumoral , Deleção Cromossômica , Cromossomos Humanos Par 16 , Variações do Número de Cópias de DNA , Humanos
16.
Sci Rep ; 8(1): 14913, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297743

RESUMO

BMP4/7-dependent expression of inhibitor of differentiation/DNA binding (Id) proteins 1 and 3 has been implicated in tumor progression and poor prognosis of malignant melanoma patients. Hyaluronic acid (HA), a pericellular matrix component, supports BMP7 signalling in murine chondrocytes through its receptor CD44. However, its role in regulating BMP signalling in melanoma is not clear. In this study we found that depletion of endogenously-produced HA by hyaluronidase treatment or by inhibition of HA synthesis by 4-methylumbelliferone (4-MU) resulted in reduced BMP4/7-dependent Id1/3 protein expression in mouse melanoma B16-F10 and Ret cells. Conversely, exogenous HA treatment increased BMP4/7-dependent Id1/3 protein expression. Knockdown of CD44 reduced BMP4/7-dependent Id1/3 protein expression, and attenuated the ability of exogenous HA to stimulate Id1 and Id3 expression in response to BMP. Co-IP experiments demonstrated that CD44 can physically associate with the BMP type II receptor (BMPR) ACVR2B. Importantly, we found that coordinate expression of Id1 or Id3 with HA synthases HAS2, HAS3, and CD44 is associated with reduced overall survival of cutaneous melanoma patients. Our results suggest that HA-CD44 interactions with BMPR promote BMP4/7-dependent Id1/3 protein expression in melanoma, contributing to reduced survival in melanoma patients.


Assuntos
Proteína Morfogenética Óssea 4/biossíntese , Proteína Morfogenética Óssea 7/biossíntese , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Proteína 1 Inibidora de Diferenciação/biossíntese , Proteínas Inibidoras de Diferenciação/biossíntese , Melanoma Experimental/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Humanos , Receptores de Hialuronatos/genética , Ácido Hialurônico/genética , Proteína 1 Inibidora de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/genética , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Proteínas de Neoplasias/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
17.
Clin Exp Metastasis ; 35(7): 563-599, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30171389

RESUMO

Hypoxia is a characteristic feature of many cancer types, which ensues when the growth of a tumour outpaces its oxygen supply. The cellular response to reduced oxygen tension is centred around the hypoxia-inducible transcription factors (HIFs), which become stabilized under hypoxic conditions. In addition, a number of oxygen-independent mechanisms of HIF regulation have been described, which also play a role at distinct stages of tumour progression. Hypoxia and HIF activity have been linked to the control of all hallmarks of cancer, and increased levels of hypoxia or HIFs in human tumours are typically associated with poor prognosis. In this review, we describe the current knowledge about the role of hypoxic signalling in tumour metastasis, which is the main cause of cancer-related mortality. The members of the HIF family, HIF1α, HIF2α and HIF3α, play important functions at all key stages of metastatic dissemination. This includes local migration within the tumour and invasion of the surrounding stromal tissue through induction of an epithelial-mesenchymal transition (EMT)-like process, remodelling of the extracellular matrix, intravasation and extravasation, survival and dissemination through the circulation, generation of premetastatic niches to support secondary tumour growth, colonisation of distant sites, and tumour cell dormancy. The central role of hypoxic signalling in tumour growth and metastasis, as well as its involvement in therapy resistance, have motivated efforts to monitor tumour hypoxia through various invasive and non-invasive techniques, and to identify inhibitors of HIFs, their regulators or their targets. Recent progress in these areas has provided indications that such approaches may represent a viable strategy for translating basic knowledge about tumour hypoxia and HIF biology into novel therapeutic strategies for metastatic cancer.


Assuntos
Neoplasias/metabolismo , Neoplasias/terapia , Hipóxia Tumoral/fisiologia , Animais , Humanos , Metástase Neoplásica , Neoplasias/patologia , Transdução de Sinais
18.
Nature ; 555(7697): 469-474, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29539639

RESUMO

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Metilação de DNA , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Sistema Nervoso Central/classificação , Neoplasias do Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Aprendizado de Máquina não Supervisionado , Adulto Jovem
19.
Methods Mol Biol ; 1742: 283-300, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29330809

RESUMO

Solid tumors are often characterized by insufficient oxygen supply (hypoxia), as a result of inadequate vascularization, which cannot keep up with the rapid growth rate of the tumor. Tumor hypoxia is a negative prognostic and predictive factor and is associated with a more aggressive phenotype in various tumor entities. Activation of the hypoxic response in tumors, which is centered around the hypoxia-inducible transcription factors (HIFs), has been causally linked to neovascularization, increased radio- and chemoresistance, altered cell metabolism, genomic instability, increased metastatic potential, and tumor stem cell characteristics. Thus, the hypoxic tumor microenvironment represents a main driving force for tumor progression and a potential target for therapeutic interventions. Here, we describe several methods for the analysis of tumor hypoxia and the hypoxic response in vivo in tumor xenograft models. These methods can be applied to various tumor models, including brain tumor xenotransplants, and allow simultaneously determining the extent and distribution of hypoxia within the tumor, analyzing HIF levels by immunohistochemistry and immunoblot, and quantifying the expression of HIF target genes in tumor tissue. The combination of these approaches provides an important tool to assess the role of the hypoxic tumor microenvironment in vivo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/cirurgia , Redes Reguladoras de Genes , Glioblastoma/cirurgia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Transplante de Neoplasias , Microambiente Tumoral
20.
Cancer Res ; 78(7): 1805-1819, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29339541

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide, in large part due to its high propensity to metastasize and to develop therapy resistance. Adaptive responses to hypoxia and epithelial-mesenchymal transition (EMT) are linked to tumor metastasis and drug resistance, but little is known about how oxygen sensing and EMT intersect to control these hallmarks of cancer. Here, we show that the oxygen sensor PHD3 links hypoxic signaling and EMT regulation in the lung tumor microenvironment. PHD3 was repressed by signals that induce EMT and acted as a negative regulator of EMT, metastasis, and therapeutic resistance. PHD3 depletion in tumors, which can be caused by the EMT inducer TGFß or by promoter methylation, enhanced EMT and spontaneous metastasis via HIF-dependent upregulation of the EGFR ligand TGFα. In turn, TGFα stimulated EGFR, which potentiated SMAD signaling, reinforcing EMT and metastasis. In clinical specimens of lung cancer, reduced PHD3 expression was linked to poor prognosis and to therapeutic resistance against EGFR inhibitors such as erlotinib. Reexpression of PHD3 in lung cancer cells suppressed EMT and metastasis and restored sensitivity to erlotinib. Taken together, our results establish a key function for PHD3 in metastasis and drug resistance and suggest opportunities to improve patient treatment by interfering with the feedforward signaling mechanisms activated by PHD3 silencing.Significance: This study links the oxygen sensor PHD3 to metastasis and drug resistance in cancer, with implications for therapeutic improvement by targeting this system. Cancer Res; 78(7); 1805-19. ©2018 AACR.


Assuntos
Antineoplásicos/uso terapêutico , Transição Epitelial-Mesenquimal/genética , Cloridrato de Erlotinib/uso terapêutico , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Crescimento Transformador alfa/metabolismo , Células A549 , Animais , Proteínas Reguladoras de Apoptose , Hipóxia Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Feminino , Células HCT116 , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Proteínas Mitocondriais/metabolismo , Metástase Neoplásica/genética , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA