Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Bioeng Transl Med ; 8(6): e10572, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023713

RESUMO

A previously developed fibrin-agarose skin model-UGRSKIN-showed promising clinical results in severely burnt patients. To determine the histological parameters associated to the biocompatibility and therapeutic effects of this model, we carried out a comprehensive structural and ultrastructural study of UGRSKIN grafted in severely burnt patients after 3 months of follow-up. The grafted epidermis was analogue to native human skin from day 30th onward, revealing well-structured strata with well-differentiated keratinocytes expressing CK5, CK8, CK10, claudin, plakoglobin, filaggrin, and involucrin in a similar way to controls, suggesting that the epidermis was able to mature and differentiate very early. Melanocytes and Langerhans cells were found from day 30th onward, together with a basement membrane, abundant hemidesmosomes and lack of rete ridges. At the dermal layer, we found an interface between the grafted skin and the host tissue at day 30th, which tended to disappear with time. The grafted superficial dermis showed a progressive increase in properly-oriented collagen fibers, elastic fibers and proteoglycans, including decorin, similarly to control dermis at day 60-90th of in vivo follow-up. Blood vessels determined by CD31 and SMA expression were more abundant in grafted skin than controls, whereas lymphatic vessels were more abundant at day 90th. These results contribute to shed light on the histological parameters associated to biocompatibility and therapeutic effect of the UGRSKIN model grafted in patients and demonstrate that the bioengineered skin grafted in patients is able to mature and differentiate very early at the epithelial level and after 60-90 days at the dermal level.

2.
Front Bioeng Biotechnol ; 11: 1235161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636000

RESUMO

Purpose: Obtaining sufficient numbers of cells in a short time is a major goal of cell culturing in cell therapy and tissue engineering. However, current bidimensional (2D) culture methods are associated to several limitations, including low efficiency and the loss of key cell differentiation markers on cultured cells. Methods: In the present work, we have designed a novel biofabrication method based on a three-dimensional (3D) culture system (FIBRIAGAR-3D). Human Wharton's jelly mesenchymal stromal cells (HWJSC) were cultured in 3D using 100%, 75%, 50%, and 25% concentrations of fibrin-agarose biomaterials (FA100, FA75, FA50 and FA25 group) and compared with control cells cultured using classical 2D systems (CTR-2D). Results: Our results showed a significant increase in the number of cells generated after 7 days of culture, with cells displaying numerous expansions towards the biomaterial, and a significant overexpression of the cell proliferation marker KI67 was found for the FA75 and FA100 groups. TUNEL and qRT-PCR analyses demonstrated that the use of FIBRIAGAR-3D was not associated with an induction of apoptosis by cultured cells. Instead, the 3D system retained the expression of typical phenotypic markers of HWJSC, including CD73, CD90, CD105, NANOG and OCT4, and biosynthesis markers such as types-I and IV collagens, with significant increase of some of these markers, especially in the FA100 group. Finally, our analysis of 8 cell signaling molecules revealed a significant decrease of GM-CSF, IFN-g, IL2, IL4, IL6, IL8, and TNFα, suggesting that the 3D culture system did not induce the expression of pro-inflammatory molecules. Conclusion: These results confirm the usefulness of FIBRIAGAR-3D culture systems to increase cell proliferation without altering cell phenotype of immunogenicity and opens the door to the possibility of using this novel biofabrication method in cell therapy and tissue engineering of the human cornea, oral mucosa, skin, urethra, among other structures.

3.
Microsc Res Tech ; 86(12): 1712-1724, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37650503

RESUMO

BACKGROUND: Histology of human oral mucosa is closely related with its function and anatomical location, and a proper characterization of the human masticatory oral mucosa could be very useful in periodontal pathology. OBJECTIVE: In the present work, we have carried out a comprehensive study in order to determine the main histological features of parakeratinized (POM) and orthokeratinized (OOM) masticatory human oral mucosa using light and electron microscopy. METHODS: To perform this, we have used several histological, histochemical and immunohistochemical methods to detect key markets at the epithelial, basement membrane and connective tissue levels. RESULTS: Our results demonstrated that POM and OOM share many histological similarities, as expected. However, important differences were observed at the epithelial layer of POM, that was significantly thicker than the epithelial layer found in OOM, especially due to a higher number of cells at the stratum spinosum. The expression pattern of CK10 and filaggrin revealed intense signal expression in OOM as compared to POM. Collagen and proteoglycans were more abundant in OOM stroma than in POM. No differences were found for blood vessels and basement membrane. CONCLUSION: These results may contribute to a better understanding of the pathological conditions affecting the human masticatory oral mucosa. In addition, these findings could be useful for the generation of different types of oral mucosa by tissue engineering techniques. RESEARCH HIGHLIGHTS: Microscopical features of parakeratinized and orthokeratinized masticatory human oral mucosa showed important differences at both, epithelial and stromal levels. Parakeratinized masticatory human oral mucosa exert thicker epithelial layer, especially, at the stratum spinosum in comparison to orthokeratinized human oral mucosa. Cytokeratin 10 and filaggrin human epithelial markers were intensively expressed in orthokeratinized masticatory human oral mucosa in comparison to parakeratinized masticatory human oral mucosa. At the stromal level, orthokeratinized masticatory human oral mucosa exhibit higher levels of collagen and proteoglycans than parakeratinized masticatory oral mucosa. The deep knowledge of histological features of masticatory oral mucosa could lead to a better understanding of oral mucosa pathology and advanced treatments.


Assuntos
Proteínas Filagrinas , Mucosa Bucal , Humanos , Mucosa Bucal/patologia , Microscopia Eletrônica , Colágeno , Proteoglicanas
4.
Biomed Pharmacother ; 164: 115000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301136

RESUMO

Skin damage due to severe burns can compromise patient life. Current tissue engineering methods allow the generation of human skin substitutes for clinical use. However, this process is time-consuming, as the keratinocytes required to generate artificial skin have a low proliferation rate in culture. In this study, we evaluated the pro-proliferative effects of three natural biomolecules isolated from olive oil: phenolic extract (PE), DL-3,4-dihydroxyphenyl glycol (DHFG), and oleuropein (OLP), on cultured human skin keratinocytes. The results showed that PE and OLP increased the proliferation of immortalized human skin keratinocytes, especially at concentrations of 10 and 5 µg/mL, respectively, without altering cell viability. In contrast, DHFG did not produce a significant improvement in keratinocyte proliferation. In normal human skin keratinocytes obtained from skin biopsies, we found that PE, but not OLP, could increase the number of keratinocyte colonies and the area occupied by these cells. Furthermore, this effect was associated with increased KI-67 and Proliferating cell nuclear antigen (PCNA) gene expression. Thus, we propose that PE positively affects keratinocyte proliferation and could be used in culture protocols to improve bioartificial skin generation by tissue engineering.


Assuntos
Queratinócitos , Pele , Humanos , Azeite de Oliva/farmacologia , Células Cultivadas , Queratinócitos/metabolismo , Engenharia Tecidual
5.
Front Bioeng Biotechnol ; 11: 1124995, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034263

RESUMO

Purpose: We carried out a histological characterization analysis of the stromal layer of human heterotypic cornea substitutes generated with extra-corneal cells to determine their putative usefulness in tissue engineering. Methods: Human bioartificial corneas were generated using nanostructured fibrin-agarose biomaterials with corneal stromal cells immersed within. To generate heterotypical corneas, umbilical cord Wharton's jelly stem cells (HWJSC) were cultured on the surface of the stromal substitutes to obtain an epithelial-like layer. These bioartificial corneas were compared with control native human corneas and with orthotypical corneas generated with human corneal epithelial cells on top of the stromal substitute. Both the corneal stroma and the basement membrane were analyzed using histological, histochemical and immunohistochemical methods in samples kept in culture and grafted in vivo for 12 months in the rabbit cornea. Results: Our results showed that the stroma of the bioartificial corneas kept ex vivo showed very low levels of fibrillar and non-fibrillar components of the tissue extracellular matrix. However, in vivo implantation resulted in a significant increase of the contents of collagen, proteoglycans, decorin, keratocan and lumican in the corneal stroma, showing higher levels of maturation and spatial organization of these components. Heterotypical corneas grafted in vivo for 12 months showed significantly higher contents of collagen fibers, proteoglycans and keratocan. When the basement membrane was analyzed, we found that all corneas grafted in vivo showed intense PAS signal and higher contents of nidogen-1, although the levels found in human native corneas was not reached, and a rudimentary basement membrane was observed using transmission electron microscopy. At the epithelial level, HWJSC used to generate an epithelial-like layer in ex vivo corneas were mostly negative for p63, whereas orthotypical corneas and heterotypical corneas grafted in vivo were positive. Conclusion: These results support the possibility of generating bioengineered artificial corneas using non-corneal HWJSC. Although heterotypical corneas were not completely biomimetic to the native human corneas, especially ex vivo, in vivo grafted corneas demonstrated to be highly biocompatible, and the animal cornea became properly differentiated at the stroma and basement membrane compartments. These findings open the door to the future clinical use of these bioartificial corneas.

6.
Mar Drugs ; 21(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36976236

RESUMO

Development of an ideal biomaterial for clinical use is one of the main objectives of current research in tissue engineering. Marine-origin polysaccharides, in particular agaroses, have been widely explored as scaffolds for tissue engineering. We previously developed a biomaterial based on a combination of agarose with fibrin, that was successfully translated to clinical practice. However, in search of novel biomaterials with improved physical and biological properties, we have now generated new fibrin-agarose (FA) biomaterials using 5 different types of agaroses at 4 different concentrations. First, we evaluated the cytotoxic effects and the biomechanical properties of these biomaterials. Then, each bioartificial tissue was grafted in vivo and histological, histochemical and immunohistochemical analyses were performed after 30 days. Ex vivo evaluation showed high biocompatibility and differences in their biomechanical properties. In vivo, FA tissues were biocompatible at the systemic and local levels, and histological analyses showed that biointegration was associated to a pro-regenerative process with M2-type CD206-positive macrophages. These results confirm the biocompatibility of FA biomaterials and support their clinical use for the generation of human tissues by tissue engineering, with the possibility of selecting specific agarose types and concentrations for applications requiring precise biomechanical properties and in vivo reabsorption times.


Assuntos
Materiais Biocompatíveis , Fibrina , Humanos , Sefarose/química , Fibrina/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Hidrogéis/química , Alicerces Teciduais/química
7.
Biomed Pharmacother ; 162: 114612, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989713

RESUMO

OBJECTIVES: Corneal diseases are among the main causes of blindness, with approximately 4.6 and 23 million patients worldwide suffering from bilateral and unilateral corneal blindness, respectively. The standard treatment for severe corneal diseases is corneal transplantation. However, relevant disadvantages, particularly in high-risk conditions, have focused the attention on the search for alternatives. METHODS: We report interim findings of a phase I-II clinical study evaluating the safety and preliminary efficacy of a tissue-engineered corneal substitute composed of a nanostructured fibrin-agarose biocompatible scaffold combined with allogeneic corneal epithelial and stromal cells (NANOULCOR). 5 subjects (5 eyes) suffering from trophic corneal ulcers refractory to conventional treatments, who combined stromal degradation or fibrosis and limbal stem cell deficiency, were included and treated with this allogeneic anterior corneal substitute. RESULTS: The implant completely covered the corneal surface, and ocular surface inflammation decreased following surgery. Only four adverse reactions were registered, and none of them were severe. No detachment, ulcer relapse nor surgical re-interventions were registered after 2 years of follow-up. No signs of graft rejection, local infection or corneal neovascularization were observed either. Efficacy was measured as a significant postoperative improvement in terms of the eye complication grading scales. Anterior segment optical coherence tomography images revealed a more homogeneous and stable ocular surface, with complete scaffold degradation occurring within 3-12 weeks after surgery. CONCLUSIONS: Our findings suggest that the surgical application of this allogeneic anterior human corneal substitute is feasible and safe, showing partial efficacy in the restoration of the corneal surface.


Assuntos
Doenças da Córnea , Transplante de Células-Tronco Hematopoéticas , Ceratite , Humanos , Córnea , Transplante de Células-Tronco , Cegueira
8.
Cells ; 12(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831296

RESUMO

Wharton's jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to preserve their unique features. The basement membrane (BM) is an essential structure during embryonic development and in adult tissues. Epithelial BMs are well-known, but similar structures are present in other histological structures, such as in peripheral nerve fibers, myocytes or chondrocytes. Previous studies suggest the expression of some BM molecules within the Wharton's Jelly (WJ) of UC, but the distribution pattern and full expression profile of these molecules have not been yet elucidated. In this sense, the aim of this histological study was to evaluate the expression of main BM molecules within the WJ, cultured WJSC and during WJSC microtissue (WJSC-MT) formation process. Results confirmed the presence of a pericellular matrix composed by the main BM molecules-collagens (IV, VII), HSPG2, agrin, laminin and nidogen-around the WJSC within UC. Additionally, ex vivo studies demonstrated the synthesis of these BM molecules, except agrin, especially during WJSC-MT formation process. The WJSC capability to synthesize main BM molecules could offer new alternatives for the generation of biomimetic-engineered substitutes where these molecules are particularly needed.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Feminino , Gravidez , Humanos , Agrina/metabolismo , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Técnicas de Cultura de Células , Membrana Basal
9.
Biomedicines ; 10(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884945

RESUMO

The most recent generation of bioengineered human skin allows for the efficient treatment of patients with severe skin defects. Despite UV sunlight can seriously affect human skin, the optical behavior in the UV range of skin models is still unexplored. In the present study, absorbance and transmittance of the UGRSKIN bioartificial skin substitute generated with human skin cells combined with fibrin-agarose biomaterials were evaluated for: UV-C (200−280 nm), -B (280−315 nm), and -A (315−400 nm) spectral range after 7, 14, 21 and 28 days of ex vivo development. The epidermis of the bioartificial skin substitute was able to mature and differentiate in a time-dependent manner, expressing relevant molecules able to absorb most of the incoming UV radiation. Absorbance spectral behavior of the skin substitutes showed similar patterns to control native skin (VAF > 99.4%), with values 0.85−0.90 times lower than control values at 7 and 14- days and 1.05−1.10 times the control values at 21- and 28-days. UV absorbance increased, and UV transmission decreased with culture time, and comparable results to the control were found at 21 and 28 days. These findings support the use of samples corresponding to 21 or 28 days of development for clinical purposes due to their higher histological similarities with native skin, but also because of their absorbance of UV radiation.

10.
Front Bioeng Biotechnol ; 10: 876734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662841

RESUMO

In the present work, we evaluated the potential of maslinic acid (MA) to improve currently available keratinocyte culture methods for use in skin tissue engineering. Results showed that MA can increase cell proliferation and WST-1 activity of human keratinocytes after 24, 48, and 72 h, especially at the concentration of 5 µg/ml, without affecting cell viability. This effect was associated to a significant increase of KI-67 protein expression and upregulation of several genes associated to cell proliferation (PCNA) and differentiation (cytokeratins, intercellular junctions and basement membrane related genes). When human keratinocytes were isolated from skin biopsies, we found that MA at the concentration of 5 µg/ml significantly increased the efficiency of the explant and the cell dissociation methods. These results revealed the positive effects of MA to optimize human keratinocyte culture protocols for use in skin tissue engineering.

11.
J Pers Med ; 12(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35455764

RESUMO

The embryonic development of the human umbilical cord (hUC) is complex, and different regions can be identified in this structure. The aim of this work is to characterize the hUC at in situ and ex vivo levels to stablish their potential use in vascular regeneration. Human umbilical cords were obtained and histologically prepared for in the situ analysis of four hUC regions (intervascular-IV, perivascular-PV, subaminoblastic-SAM, and Wharton's jelly-WH), and primary cell cultures of mesenchymal stem cells (hUC-MSC) isolated from each region were obtained. The results confirmed the heterogeneity of the hUC, with the IV and PV zones tending to show the higher in situ expression of several components of the extracellular matrix (collagens, proteoglycans, and glycosaminoglycans), vimentin, and MSC markers (especially CD73), although isolation and ex vivo culture resulted in a homogeneous cell profile. Three vascular markers were positive in situ, especially vWF, followed by CD34 and CD31, and isolation and culture revealed that the region associated with the highest expression of vascular markers was IV, followed by PV. These results confirm the heterogeneity of the hUC and the need for selecting cells from specific regions of the hUC for particular applications in tissue engineering.

12.
Biomedicines ; 9(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34829863

RESUMO

Human skin keratinocyte primary cultures can be established from skin biopsies with culture media containing epithelial growth factor (EGF). Although current methods are efficient, optimization is required to accelerate the procedure and obtain these cultures in less time. In the present study, we evaluated the effect of novel formulations based on EGF-loaded nanostructured lipid carriers (NLC). First, biosafety of NLC containing recombinant human EGF (NLC-rhEGF) was verified in immortalized skin keratinocytes and cornea epithelial cells, and in two epithelial cancer cell lines, by quantifying free DNA released to the culture medium. Then we established primary cell cultures of human skin keratinocytes with basal culture media (BM) and BM supplemented with NLC-rhEGF, liquid EGF (L-rhEGF), or NLC alone (NLC-blank). The results showed that cells isolated by enzymatic digestion and cultured with or without a feeder layer had a similar growth rate regardless of the medium used. However, the explant technique showed higher efficiency when NLC-rhEGF culture medium was used, compared to BM, L-rhEGF, or NLC-blank. Gene expression analysis showed that NLC-rhEGF was able to increase EGFR gene expression, along with that of other genes related to cytokeratins, cell-cell junctions, and keratinocyte maturation and differentiation. In summary, these results support the use of NLC-rhEGF to improve the efficiency of explant-based methods in the efficient generation of human keratinocyte primary cell cultures for tissue engineering use.

13.
Polymers (Basel) ; 13(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833238

RESUMO

Critical defects of the mandibular bone are very difficult to manage with currently available materials and technology. In the present work, we generated acellular and cellular substitutes for human bone by tissue engineering using nanostructured fibrin-agarose biomaterials, with and without adipose-tissue-derived mesenchymal stem cells differentiated to the osteogenic lineage using inductive media. Then, these substitutes were evaluated in an immunodeficient animal model of severely critical mandibular bone damage in order to assess the potential of the bioartificial tissues to enable bone regeneration. The results showed that the use of a cellular bone substitute was associated with a morpho-functional improvement of maxillofacial structures as compared to negative controls. Analysis of the defect site showed that none of the study groups fully succeeded in generating dense bone tissue at the regeneration area. However, the use of a cellular substitute was able to improve the density of the regenerated tissue (as determined via CT radiodensity) and form isolated islands of bone and cartilage. Histologically, the regenerated bone islands were comparable to control bone for alizarin red and versican staining, and superior to control bone for toluidine blue and osteocalcin in animals grafted with the cellular substitute. Although these results are preliminary, cellular fibrin-agarose bone substitutes show preliminary signs of usefulness in this animal model of severely critical mandibular bone defect.

14.
Pharmaceutics ; 13(10)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34684011

RESUMO

Patients with severe limbal damage and limbal stem cell deficiency are a therapeutic challenge. We evaluated four decellularization protocols applied to the full-thickness and half-thickness porcine limbus, and we used two cell types to recellularize the decellularized limbi. The results demonstrated that all protocols achieved efficient decellularization. However, the method that best preserved the transparency and composition of the limbus extracellular matrix was the use of 0.1% SDS applied to the half-thickness limbus. Recellularization with the limbal epithelial cell line SIRC and human adipose-derived mesenchymal stem cells (hADSCs) was able to generate a stratified epithelium able to express the limbal markers p63, pancytokeratin, and crystallin Z from day 7 in the case of SIRC and after 14-21 days of induction when hADSCs were used. Laminin and collagen IV expression was detected at the basal lamina of both cell types at days 14 and 21 of follow-up. Compared with control native limbi, tissues recellularized with SIRC showed adequate picrosirius red and alcian blue staining intensity, whereas limbi containing hADSCs showed normal collagen staining intensity. These preliminary results suggested that the limbal substitutes generated in this work share important similarities with the native limbus and could be potentially useful in the future.

15.
J Periodontal Res ; 56(6): 1116-1131, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34510438

RESUMO

OBJECTIVE: The aim of this study was to generate novel models of bioartificial human oral mucosa with increased vascularization potential for future use as an advanced therapies medicinal product, by using different vascular and mesenchymal stem cell sources. BACKGROUND: Oral mucosa substitutes could contribute to the clinical treatment of complex diseases affecting the oral cavity. Although several models of artificial oral mucosa have been described, biointegration is a major issue that could be favored by the generation of novel substitutes with increased vascularization potential once grafted in vivo. METHODS: Three types of mesenchymal stem cells (MSCs) were obtained from adipose tissue, bone marrow, and dental pulp, and their in vitro potential was evaluated by inducing differentiation to the endothelial lineage using conditioning media. Then, 3D models of human artificial oral mucosa were generated using biocompatible fibrin-agarose biomaterials combined with human oral mucosa fibroblasts and each type of MSC before and after induction to the endothelial lineage, using human umbilical vein endothelial cells (HUVEC) as controls. The vascularization potential of each oral mucosa substitute was assessed in vitro and in vivo in nude mice. RESULTS: In vitro induction of MSCs kept in culture was able to increase the expression of VEGF, CD31, and vWF endothelial markers, especially in bone marrow and dental pulp-MSCs, and numerous proteins with a role in vasculogenesis become overexpressed. Then, in vivo grafting resulted in a significant increase in blood vessels formation at the interface area between the graft and the host tissues, with significantly positive expression of VEGF, CD31, vWF, and CD34 as compared to negative controls, especially when pre-differentiated MSCs derived from bone marrow and dental pulp were used. In addition, a significantly higher number of cells committed to the endothelial lineage expressing the same endothelial markers were found within the bioartificial tissue. CONCLUSION: Our results suggest that the use of pre-differentiated MSCs could contribute to a rapid generation of a vascular network that may favor in vivo biointegration of bioengineered human oral mucosa substitutes.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Animais , Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Mucosa Bucal/cirurgia , Neovascularização Fisiológica
16.
Polymers (Basel) ; 13(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068343

RESUMO

Several models of bioartificial human urothelial mucosa (UM) have been described recently. In this study, we generated novel tubularized UM substitutes using alternative sources of cells. Nanostructured fibrin-agarose biomaterials containing fibroblasts isolated from the human ureter were used as stroma substitutes. Then, human Wharton jelly mesenchymal stromal cells (HWJSC) were used to generate an epithelial-like layer on top. Three differentiation media were used for 7 and 14 days. Results showed that the biofabrication methods used here succeeded in generating a tubular structure consisting of a stromal substitute with a stratified epithelial-like layer on top, especially using a medium containing epithelial growth and differentiation factors (EM), although differentiation was not complete. At the functional level, UM substitutes were able to synthesize collagen fibers, proteoglycans and glycosaminoglycans, although the levels of control UM were not reached ex vivo. Epithelial differentiation was partially achieved, especially with EM after 14 days of development, with expression of keratins 7, 8, and 13 and pancytokeratin, desmoplakin, tight-junction protein-1, and uroplakin 2, although at lower levels than controls. These results confirm the partial urothelial differentiative potential of HWJSC and suggest that the biofabrication methods explored here were able to generate a potential substitute of the human UM for future clinical use.

18.
J Nanobiotechnology ; 18(1): 174, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228673

RESUMO

BACKGROUND: Treatment of patients affected by severe burns is challenging, especially due to the high risk of Pseudomonas infection. In the present work, we have generated a novel model of bioartificial human dermis substitute by tissue engineering to treat infected wounds using fibrin-agarose biomaterials functionalized with nanostructured lipid carriers (NLCs) loaded with two anti-Pseudomonas antibiotics: sodium colistimethate (SCM) and amikacin (AMK). RESULTS: Results show that the novel tissue-like substitutes have strong antibacterial effect on Pseudomonas cultures, directly proportional to the NLC concentration. Free DNA quantification, WST-1 and Caspase 7 immunohistochemical assays in the functionalized dermis substitute demonstrated that neither cell viability nor cell proliferation were affected by functionalization in most study groups. Furthermore, immunohistochemistry for PCNA and KI67 and histochemistry for collagen and proteoglycans revealed that cells proliferated and were metabolically active in the functionalized tissue with no differences with controls. When functionalized tissues were biomechanically characterized, we found that NLCs were able to improve some of the major biomechanical properties of these artificial tissues, although this strongly depended on the type and concentration of NLCs. CONCLUSIONS: These results suggest that functionalization of fibrin-agarose human dermal substitutes with antibiotic-loaded NLCs is able to improve the antibacterial and biomechanical properties of these substitutes with no detectable side effects. This opens the door to future clinical use of functionalized tissues.


Assuntos
Antibacterianos , Lipídeos/química , Nanoestruturas , Pele Artificial , Engenharia Tecidual/métodos , Amicacina/química , Amicacina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colistina/análogos & derivados , Colistina/química , Colistina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Fibroblastos/citologia , Humanos , Nanoestruturas/química , Nanoestruturas/toxicidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-32671048

RESUMO

PURPOSE: Human cornea substitutes generated by tissue engineering currently require limbal stem cells for the generation of orthotypical epithelial cell cultures. We recently reported that bioengineered corneas can be fabricated in vitro from a heterotypical source obtained from Wharton's jelly in the human umbilical cord (HWJSC). METHODS: Here, we generated a partial thickness cornea model based on plastic compression nanostructured fibrin-agarose biomaterials with cornea epithelial cells on top, as an orthotypical model (HOC), or with HWJSC, as a heterotypical model (HHC), and determined their potential in vivo usefulness by implantation in an animal model. RESULTS: No major side effects were seen 3 and 12 months after implantation of either bioengineered partial cornea model in rabbit corneas. Clinical results determined by slit lamp and optical coherence tomography were positive after 12 months. Histological and immunohistochemical findings demonstrated that in vitro HOC and HHC had moderate levels of stromal and epithelial cell marker expression, whereas in vivo grafted corneas were more similar to control corneas. CONCLUSION: These results suggest that both models are potentially useful to treat diseases requiring anterior cornea replacement, and that HHC may be an efficient alternative to the use of HOC which circumvents the need to generate cornea epithelial cell cultures.

20.
Materials (Basel) ; 13(7)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260417

RESUMO

Recent advances in tissue engineering offer innovative clinical alternatives in dentistry and regenerative medicine. Tissue engineering combines human cells with compatible biomaterials to induce tissue regeneration. Shortening the fabrication time of biomaterials used in tissue engineering will contribute to treatment improvement, and biomaterial functionalization can be exploited to enhance scaffold properties. In this work, we have tested an alternative biofabrication method by directly including human oral mucosa tissue explants within the biomaterial for the generation of human bioengineered mouth and dental tissues for use in tissue engineering. To achieve this, acellular fibrin-agarose scaffolds (AFAS), non-functionalized fibrin-agarose oral mucosa stroma substitutes (n-FAOM), and novel functionalized fibrin-agarose oral mucosa stroma substitutes (F-FAOM) were developed and analyzed after 1, 2, and 3 weeks of in vitro development to determine extracellular matrix components as compared to native oral mucosa controls by using histochemistry and immunohistochemistry. Results demonstrate that functionalization speeds up the biofabrication method and contributes to improve the biomimetic characteristics of the scaffold in terms of extracellular matrix components and reduce the time required for in vitro tissue development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA