Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34683923

RESUMO

In recent decades, antimicrobial resistance (AMR) has led to an increased use of therapeutic alternatives. Among these options, colistin continues to be an option for the treatment of multi-resistant (MDR) Gram-negative bacterial infections. However, due to its high toxicity (nephrotoxicity and neurotoxicity) and narrow therapeutic window, colistin treatment must be utilized carefully. Colistin-treated patients have been observed to have higher mortality due to inadequate therapeutic levels. The objective of this study was to estimate the difference in colistin plasma levels in critically ill patients, and its relationship to favorable or unfavorable clinical outcomes. This prospective observational study was conducted between September 2017 and June 2020 at the Universidad de La Sabana Clinic, in patients who had been treated with colistimethate sodium (CMS) for at least 72 h until day 7 of drug treatment in the critical care unit of a university hospital. There were no statistically significant differences in colistin levels between groups with favorable or unfavorable clinical outcomes (0.16 SD vs. 0.54 SD p-value = 0.167). There was higher mortality in patients with subtherapeutic levels (18% vs. 0%), and additionally, there was a greater rate of renal failure in the group with higher therapeutic levels (50% vs. 20.7%). Due to the loss of power of the study, we were unable to demonstrate a possible difference between colistin levels related to favorable or unfavorable clinical outcomes at day 7. However, we recommend further studies to evaluate the impact of measuring levels in terms of mortality and security.

2.
J Pers Med ; 10(4)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32993004

RESUMO

Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.

3.
Biosensors (Basel) ; 9(4)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718050

RESUMO

Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.


Assuntos
Antineoplásicos/análise , Técnicas Biossensoriais , Monitoramento de Medicamentos , Antineoplásicos/uso terapêutico , Humanos , Microscopia
4.
Antibiotics (Basel) ; 8(3)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344885

RESUMO

Antimicrobial resistance to antibiotic treatment has significantly increased during recent years, causing this to become a worldwide public health problem. More than 70% of pathogenic bacteria are resistant to at least one of the currently used antibiotics. Polymyxin E (colistin) has recently been used as a "last line" therapy when treating Gram-negative multi-resistant bacteria. However, little is known about these molecules' pharmacological use as they have been discontinued because of their high toxicity. Recent research has been focused on determining colistimethate sodium's pharmacokinetic parameters to find the optimal dose for maintaining a suitable benefit-risk balance. This review has thus been aimed at describing the use of colistin on patients infected by multi-drug resistant bacteria and the importance of measuring this drug's plasma levels in such patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA