Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
3.
Nat Genet ; 53(7): 955-961, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34140685

RESUMO

The interplay between light receptors and PHYTOCHROME-INTERACTING FACTORs (PIFs) serves as a regulatory hub that perceives and integrates environmental cues into transcriptional networks of plants1,2. Although occupancy of the histone variant H2A.Z and acetylation of histone H3 have emerged as regulators of environmentally responsive gene networks, how these epigenomic features interface with PIF activity is poorly understood3-7. By taking advantage of rapid and reversible light-mediated manipulation of PIF7 subnuclear localization and phosphorylation, we simultaneously assayed the DNA-binding properties of PIF7, as well as its impact on chromatin dynamics genome wide. We found that PIFs act rapidly to reshape the H2A.Z and H3K9ac epigenetic landscape in response to a change in light quality. Furthermore, we discovered that PIFs achieve H2A.Z removal through direct interaction with EIN6 ENHANCER (EEN), the Arabidopsis thaliana homolog of the chromatin remodeling complex subunit INO80 Subunit 6 (Ies6). Thus, we describe a PIF-INO80 regulatory module that is an intermediate step for allowing plants to change their growth trajectory in response to environmental changes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Interação Gene-Ambiente , Epigênese Genética , Variação Genética , Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
4.
Aging Cell ; 16(4): 785-796, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28568901

RESUMO

Sgf73, a core component of SAGA, is the yeast orthologue of ataxin-7, which undergoes CAG-polyglutamine repeat expansion leading to the human neurodegenerative disease spinocerebellar ataxia type 7 (SCA7). Deletion of SGF73 dramatically extends replicative lifespan (RLS) in yeast. To further define the basis for Sgf73-mediated RLS extension, we performed ChIP-Seq, identified 388 unique genomic regions occupied by Sgf73, and noted enrichment in promoters of ribosomal protein (RP)-encoding genes. Of 388 Sgf73 binding sites, 33 correspond to 5' regions of genes implicated in RLS extension, including 20 genes encoding RPs. Furthermore, half of Sgf73-occupied, RLS-linked RP genes displayed significantly reduced expression in sgf73Δ mutants, and double null strains lacking SGF73 and a Sgf73-regulated, RLS-linked RP gene exhibited no further increase in replicative lifespan. We also found that sgf73Δ mutants display altered acetylation of Ifh1, an important regulator of RP gene transcription. These findings implicate altered ribosomal protein expression in sgf73Δ yeast RLS and highlight altered acetylation as a pathway of relevance for SCA7 neurodegeneration.


Assuntos
Deleção de Genes , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/genética , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Acetilação , Ataxina-7/deficiência , Ataxina-7/genética , Sequência de Bases , Sítios de Ligação , Divisão Celular , Histona Acetiltransferases/deficiência , Humanos , Viabilidade Microbiana , Anotação de Sequência Molecular , Ligação Proteica , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Transativadores/genética , Transativadores/metabolismo
5.
Nat Methods ; 14(8): 819-825, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28650476

RESUMO

Broad-scale protein-protein interaction mapping is a major challenge given the cost, time, and sensitivity constraints of existing technologies. Here, we present a massively multiplexed yeast two-hybrid method, CrY2H-seq, which uses a Cre recombinase interaction reporter to intracellularly fuse the coding sequences of two interacting proteins and next-generation DNA sequencing to identify these interactions en masse. We applied CrY2H-seq to investigate sparsely annotated Arabidopsis thaliana transcription factors interactions. By performing ten independent screens testing a total of 36 million binary interaction combinations, and uncovering a network of 8,577 interactions among 1,453 transcription factors, we demonstrate CrY2H-seq's improved screening capacity, efficiency, and sensitivity over those of existing technologies. The deep-coverage network resource we call AtTFIN-1 recapitulates one-third of previously reported interactions derived from diverse methods, expands the number of known plant transcription factor interactions by three-fold, and reveals previously unknown family-specific interaction module associations with plant reproductive development, root architecture, and circadian coordination.


Assuntos
Arabidopsis/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Arabidopsis/genética , Proteoma/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética
6.
Cell Rep ; 8(2): 477-86, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043177

RESUMO

We have analyzed the yeast replicative lifespan of a large number of open reading frame (ORF) deletions. Here, we report that strains lacking genes SGF73, SGF11, and UBP8 encoding SAGA/SLIK complex histone deubiquitinase module (DUBm) components are exceptionally long lived. Strains lacking other SAGA/SALSA components, including the acetyltransferase encoded by GCN5, are not long lived; however, these genes are required for the lifespan extension observed in DUBm deletions. Moreover, the SIR2-encoded histone deacetylase is required, and we document both a genetic and physical interaction between DUBm and Sir2. A series of studies assessing Sir2-dependent functions lead us to propose that DUBm strains are exceptionally long lived because they promote multiple prolongevity events, including reduced rDNA recombination and altered silencing of telomere-proximal genes. Given that ataxin-7, the human Sgf73 ortholog, causes the neurodegenerative disease spinocerebellar ataxia type 7, our findings indicate that the genetic and epigenetic interactions between DUBm and SIR2 will be relevant to neurodegeneration and aging.


Assuntos
Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Transativadores/metabolismo , Proliferação de Células , Endopeptidases/genética , Endopeptidases/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Transativadores/genética
7.
J Biol Chem ; 286(30): 26298-307, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21628456

RESUMO

The sterol-sensing domain (SSD) is a conserved motif in membrane proteins responsible for sterol regulation. Mammalian proteins SREBP cleavage-activating protein (SCAP) and HMG-CoA reductase (HMGR) both possess SSDs required for feedback regulation of sterol-related genes and sterol synthetic rate. Although these two SSD proteins clearly sense sterols, the range of signals detected by this eukaryotic motif is not clear. The yeast HMG-CoA reductase isozyme Hmg2, like its mammalian counterpart, undergoes endoplasmic reticulum (ER)-associated degradation that is subject to feedback control by the sterol pathway. The primary degradation signal for yeast Hmg2 degradation is the 20-carbon isoprene geranylgeranyl pyrophosphate, rather than a sterol. Nevertheless, the Hmg2 protein possesses an SSD, leading us to test its role in feedback control of Hmg2 stability. We mutated highly conserved SSD residues of Hmg2 and evaluated regulated degradation. Our results indicated that the SSD was required for sterol pathway signals to stimulate Hmg2 ER-associated degradation and was employed for detection of both geranylgeranyl pyrophosphate and a secondary oxysterol signal. Our data further indicate that the SSD allows a signal-dependent structural change in Hmg2 that promotes entry into the ER degradation pathway. Thus, the eukaryotic SSD is capable of significant plasticity in signal recognition or response. We propose that the harnessing of cellular quality control pathways to bring about feedback regulation of normal proteins is a unifying theme for the action of all SSDs.


Assuntos
Retículo Endoplasmático/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Retículo Endoplasmático/genética , Hidroximetilglutaril-CoA Redutases/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 284(51): 35368-80, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19776008

RESUMO

3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR), the rate-limiting enzymes of sterol synthesis, undergoes feedback-regulated endoplasmic reticulum degradation in both mammals and yeast. The yeast Hmg2p isozyme is subject to ubiquitin-mediated endoplasmic reticulum degradation by the HRD pathway. We had previously shown that alterations in cellular levels of the 15-carbon sterol pathway intermediate farnesyl pyrophosphate (FPP) cause increased Hmg2p ubiquitination and degradation. We now present evidence that the FPP-derived, 20-carbon molecule geranylgeranyl pyrophosphate (GGPP) is a potent endogenous regulator of Hmg2p degradation. This work was launched by the unexpected observation that GGPP addition directly to living yeast cultures caused high potency and specific stimulation of Hmg2p degradation. This effect of GGPP was not recapitulated by FPP, GGOH, or related isoprenoids. GGPP-caused Hmg2p degradation met all the criteria for the previously characterized endogenous signal. The action of added GGPP did not require production of endogenous sterol molecules, indicating that it did not act by causing the build-up of an endogenous pathway signal. Manipulation of endogenous GGPP by several means showed that naturally made GGPP controls Hmg2p stability. Analysis of the action of GGPP indicated that the molecule works upstream of retrotranslocation and can directly alter the structure of Hmg2p. We propose that GGPP is the FPP-derived regulator of Hmg2p ubiquitination. Intriguingly, the sterol-dependent degradation of mammalian HMGR is similarly stimulated by the addition of GGOH to intact cells, implying that a dependence on 20-carbon geranylgeranyl signals may be a common conserved feature of HMGR regulation that may lead to highly specific therapeutic approaches for modulation of HMGR.


Assuntos
Retículo Endoplasmático/enzimologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sesquiterpenos/metabolismo , Ubiquitinação/fisiologia , Retículo Endoplasmático/genética , Hidroximetilglutaril-CoA Redutases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/genética , Ubiquitina/metabolismo
9.
J Biol Chem ; 284(22): 14710-22, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19324879

RESUMO

Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the ubiquitin-mediated destruction of both misfolded and normal ER-resident proteins. ERAD substrates must be moved from the ER to the cytoplasm for ubiquitination and proteasomal destruction by a process called retrotranslocation. Many aspects of retrotranslocation are poorly understood, including its generality, the cellular components required, the energetics, and the mechanism of transfer through the ER membrane. To address these questions, we have developed an in vitro assay, using the 8-transmembrane span ER-resident Hmg2p isozyme of HMG-CoA reductase fused to GFP, which undergoes regulated ERAD mediated by the Hrd1p ubiquitin ligase. We have now directly demonstrated in vitro retrotranslocation of full-length, ubiquitinated Hmg2p-GFP to the aqueous phase. Hrd1p was rate-limiting for Hmg2p-GFP retrotranslocation, which required ATP, the AAA-ATPase Cdc48p, and its receptor Ubx2p. In addition, the adaptors Dsk2p and Rad23p, normally implicated in later parts of the pathway, were required. Hmg2p-GFP retrotranslocation did not depend on any of the proposed ER channel candidates. To examine the role of the Hrd1p transmembrane domain as a retrotranslocon, we devised a self-ubiquitinating polytopic substrate (Hmg1-Hrd1p) that undergoes ERAD in the absence of Hrd1p. In vitro retrotranslocation of full-length Hmg1-Hrd1p occurred in the absence of the Hrd1p transmembrane domain, indicating that it did not serve a required channel function. These studies directly demonstrate polytopic membrane protein retrotranslocation during ERAD and delineate avenues for mechanistic understanding of this general process.


Assuntos
Membrana Celular/enzimologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Ubiquitinação
11.
J Biol Chem ; 281(51): 38989-9001, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17035235

RESUMO

A critical aspect of E3 ubiquitin ligase function is the selection of a particular E2 ubiquitin-conjugating enzyme to accomplish ubiquitination of a substrate. We examined the requirements for correct E2-E3 specificity in the RING-H2 ubiquitin ligase Hrd1p, an ER-localized protein known to use primarily Ubc7p for its function. Versions of Hrd1p containing the RING motif from homologous E3s were unable to carry out Hrd1p function, revealing a requirement for the specific Hrd1p RING motif in vivo. An in vitro assay revealed that these RING motifs were sufficient to function as ubiquitin ligases, but that they did not display the E2 specificity predicted from in vivo results. We further refined the in vitro assay of Hrd1p function by demanding not only ubiquitin ligase activity, but also specific activity that recapitulated both the E2 specificity and RING selectivity observed in vivo. Doing so revealed that correct E2 engagement by Hrd1p required the presence of portions of the Hrd1p soluble cytoplasmic domain outside the RING motif, the placement of the Hrd1p ubiquitin ligase in the ER membrane, and presentation of Ubc7p in the cytosolic context. We confirmed that these conditions supported the ubiquitination of Hrd1p itself, and the transfer of ubiquitin to the prototype substrate Hmg2p-GFP, validating Hrd1p self-ubiquitination as a viable assay of ligase function.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Quitina/química , Citosol/química , Retículo Endoplasmático/metabolismo , Histidina/química , Inteínas , Bicamadas Lipídicas/química , Microssomos/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA