Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 188: 114491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823842

RESUMO

Minimum inhibitory concentrations (MIC) assays are often questioned for their representativeness. Especially when foodborne pathogens are tested, it is of crucial importance to also consider parameters of the human digestive system. Hence, the current study aimed to assess the inhibitory capacity of two antibiotics, ciprofloxacin and tetracycline, against Salmonella enterica and Listeria monocytogenes, under representative environmental conditions. More specifically, aspects of the harsh environment of the human gastrointestinal tract (GIT) were gradually added to the experimental conditions starting from simple aerobic lab conditions into an in vitro simulation of the GIT. In this way, the effects of parameters including the anoxic environment, physicochemical conditions of the GIT (low gastric pH, digestive enzymes, bile acids) and the gut microbiota were evaluated. The latter was simulated by including a representative consortium of selected gut bacteria species. In this study, the MIC of the two antibiotics against the relevant foodborne pathogens were established, under the previously mentioned environmental conditions. The results of S. enterica highlighted the importance of the anaerobic environment when conducting such studies, since the pathogen thrived under such conditions. Inclusion of physicochemical barriers led to exactly opposite results for S. enterica and L. monocytogenes since the former became more susceptible to ciprofloxacin while the latter showed lower susceptibility towards tetracycline. Finally, the inclusion of gut bacteria had a bactericidal effect against L. monocytogenes even in the absence of antibiotics, while gut bacteria protected S. enterica from the effect of ciprofloxacin.


Assuntos
Antibacterianos , Ciprofloxacina , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Salmonella enterica , Tetraciclina , Ciprofloxacina/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Tetraciclina/farmacologia , Antibacterianos/farmacologia , Humanos , Trato Gastrointestinal/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle
2.
Food Res Int ; 173(Pt 2): 113292, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803689

RESUMO

The human gastrointestinal tract employs an assortment of chemical, enzymatic and immune barriers to impede pathogen colonization. An essential component of these barriers is the gut microbiota, which infers protection against ingested pathogens through its colonization resistance mechanisms. Specifically, the gut microbiota of the distal small intestine (ileum) renders a crucial line of defense, given that this location is regarded as an important interaction site. This study aimed to evaluate the impact of the ileal microbiota on the survival of the foodborne pathogens Salmonella enterica serotype Typhimurium and Listeria monocytogenes, utilizing an in vitro digestion model system. Moreover, the effect of diet on the gut microbiota colonization resistance mechanisms was assessed, by comparing a healthy (high fiber/low sugar) and a western diet (low fiber/high sugar). For S. Typhimurium, the results revealed that the digestion of a healthy diet led to a similar inactivation compared to the western diet, with the values of total log reduction being 0.83 and 0.82 log(CFU), respectively; yet the lack of readily accessible nutrients in the healthy diet combined with the acidic shock during gastric digestion caused the induction of stress tolerance to the pathogen. This resulted in increased pathogen survival in the presence of gut microbiota, with S. Typhimurium proliferating during the ileal phase with a maximum specific growth rate of 0.16 1/h. On the contrary, for L. monocytogenes, the healthy diet was associated with a greater inactivation than the western diet (total log reduction values: 3.08 and 1.30 log(CFU), respectively), which appeared strongly influenced by the encounter of the pathogen with the gut microbiota. Regarding the latter, the species Escherichia coli and Bacteroides thetaiotaomicron appeared to be the most prevalent in most cases. Finally, it was also demonstrated that the ileal microbiota colonization resistance mechanisms largely relied on competitive responses. The obtained knowledge of this research can contribute to the development and/or complementation of defensive strategies against pathogen infection, while also underlining the value of in vitro approaches.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Humanos , Salmonella typhimurium/fisiologia , Íleo , Escherichia coli , Dieta , Açúcares , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA