Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Biol Sci ; 289(1986): 20221565, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36321487

RESUMO

In the conventional model of serotonin neurotransmission, serotonin released by neurons in the midbrain raphe nuclei exerts its actions on forebrain neurons by interacting with a large family of post-synaptic receptors. The actions of serotonin are terminated by active transport of serotonin back into the releasing neuron, which is mediated by the serotonin reuptake transporter (SERT). Because SERT is expressed pre-synaptically and is widely thought to be the only serotonin transporter in the forebrain, the conventional model does not include serotonin transport into post-synaptic neurons. However, a large body of evidence accumulating since the 1970s has shown that serotonin, despite having a positive charge, can cross cell membranes through a diffusion-like process. Multiple low-affinity, high-capacity, sodium-independent transporters, widely expressed in the brain, allow the carrier-mediated diffusion of serotonin into forebrain neurons. The amount of serotonin crossing cell membranes through this mechanism under physiological conditions is considerable. Most prominent textbooks fail to include this alternative method of serotonin uptake in the brain, and even most neuroscientists are unaware of it. This failure has limited our understanding of a key regulator of serotonergic neurotransmission, impeded research on the potential intracellular actions of serotonin in post-synaptic neurons and glial cells, and may have impeded our understanding of the mechanism by which antidepressant medications reduce depressive symptoms.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Neurônios , Membrana Celular/metabolismo , Encéfalo/metabolismo
2.
Glia ; 70(9): 1777-1794, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35589612

RESUMO

Norepinephrine exerts powerful influences on the metabolic, neuroprotective and immunoregulatory functions of astrocytes. Until recently, all effects of norepinephrine were believed to be mediated by receptors localized exclusively to the plasma membrane. However, recent studies in cardiomyocytes have identified adrenergic receptors localized to intracellular membranes, including Golgi and inner nuclear membranes, and have shown that norepinephrine can access these receptors via transporter-mediated uptake. We recently identified a high-capacity norepinephrine transporter, organic cation transporter 3 (OCT3), densely localized to outer nuclear membranes in astrocytes, suggesting that adrenergic signaling may also occur at the inner nuclear membrane in these cells. Here, we used immunofluorescence and western blot to show that ß1 -adrenergic receptors are localized to astrocyte inner nuclear membranes; that key adrenergic signaling partners are present in astrocyte nuclei; and that OCT3 and other catecholamine transporters are localized to astrocyte plasma and nuclear membranes. To test the functionality of nuclear membrane ß1 -adrenergic receptors, we monitored real-time protein kinase A (PKA) activity in astrocyte nuclei using a fluorescent biosensor. Treatment of astrocytes with norepinephrine induced rapid increases in PKA activity in the nuclear compartment. Pretreatment of astrocytes with inhibitors of catecholamine uptake blocked rapid norepinephrine-induced increases in nuclear PKA activity. These studies, the first to document functional adrenergic receptors at the nuclear membrane in any central nervous system cell, reveal a novel mechanism by which norepinephrine may directly influence nuclear processes. This mechanism may contribute to previously described neuroprotective, metabolic and immunoregulatory actions of norepinephrine.


Assuntos
Astrócitos , Norepinefrina , Adrenérgicos/farmacologia , Astrócitos/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Membrana Nuclear/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 1/metabolismo
3.
Handb Exp Pharmacol ; 266: 241-251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104992

RESUMO

Corticosteroid hormones exert powerful influences on neuronal physiology and behavior by activating intracellular glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), which act as ligand-gated transcription factors, altering gene expression. In addition to these genomic effects on physiology and behavior, which are usually delayed by minutes to hours, corticosteroid hormones also initiate rapid effects through diverse nongenomic mechanisms. One such mechanism involves the direct inhibition by corticosteroid hormones of monoamine transport mediated by the "uptake2" transporter, organic cation transporter 3 (OCT3), a high-capacity, low-affinity transporter for norepinephrine, epinephrine, dopamine, serotonin, and histamine. In this review we describe studies that demonstrate OCT3 expression and corticosterone-sensitive monoamine transport in the brain and present evidence supporting the hypothesis that corticosterone exerts rapid, nongenomic actions on glia and neurons, ultimately modulating physiology and behavior, by inhibiting OCT3-mediated monoamine clearance. We also describe the corticosteroid sensitivity of the other members of the uptake2 family and examine their potential contributions to nongenomic effects of corticosteroids in the brain.


Assuntos
Glucocorticoides , Proteínas de Transporte de Cátions Orgânicos , Cátions , Corticosterona , Glucocorticoides/farmacologia , Humanos , Neurônios
4.
Handb Exp Pharmacol ; 266: 187-197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987762

RESUMO

Catecholamines, including dopamine, norepinephrine, and epinephrine, are modulatory transmitters released from specialized neurons throughout the brain. Collectively, catecholamines exert powerful regulation of mood, motivation, arousal, and plasticity. Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released catecholamines, thus playing key roles in determining the magnitude and duration of their modulatory effects. Most studies of catecholamine clearance have focused on the presynaptic high-affinity, low-capacity dopamine (DAT), and norepinephrine (NET) transporters, which are members of the uptake1 family of monoamine transporters. However, recent studies have demonstrated that members of the uptake2 family of monoamine transporters, including organic cation transporter 2 (OCT2), OCT3, and the plasma membrane monoamine transporter (PMAT) are expressed widely throughout the brain. In contrast to DAT and NET, these transporters have higher capacity and lower affinity for catecholamines and are multi-specific, each with the capacity to transport all catecholamines. The expression of these transporters in the brain suggests that they play significant roles in regulating catecholamine homeostasis. This review summarizes studies describing the anatomical distribution of OCT2, OCT3, and PMAT, their cellular and subcellular localization, and their contribution to the regulation of the clearance of catecholamines in the brain.


Assuntos
Encéfalo , Catecolaminas , Transporte Biológico , Encéfalo/metabolismo , Cátions , Homeostase , Humanos , Proteínas de Transporte de Cátions Orgânicos/metabolismo
5.
Circ Res ; 128(2): 246-261, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33183171

RESUMO

RATIONALE: ß1ARs (ß1-adrenoceptors) exist at intracellular membranes and OCT3 (organic cation transporter 3) mediates norepinephrine entry into cardiomyocytes. However, the functional role of intracellular ß1AR in cardiac contractility remains to be elucidated. OBJECTIVE: Test localization and function of intracellular ß1AR on cardiac contractility. METHODS AND RESULTS: Membrane fractionation, super-resolution imaging, proximity ligation, coimmunoprecipitation, and single-molecule pull-down demonstrated a pool of ß1ARs in mouse hearts that were associated with sarco/endoplasmic reticulum Ca2+-ATPase at the sarcoplasmic reticulum (SR). Local PKA (protein kinase A) activation was measured using a PKA biosensor targeted at either the plasma membrane (PM) or SR. Compared with wild-type, myocytes lacking OCT3 (OCT3-KO [OCT3 knockout]) responded identically to the membrane-permeant ßAR agonist isoproterenol in PKA activation at both PM and SR. The same was true at the PM for membrane-impermeant norepinephrine, but the SR response to norepinephrine was suppressed in OCT3-KO myocytes. This differential effect was recapitulated in phosphorylation of the SR-pump regulator phospholamban. Similarly, OCT3-KO selectively suppressed calcium transients and contraction responses to norepinephrine but not isoproterenol. Furthermore, sotalol, a membrane-impermeant ßAR-blocker, suppressed isoproterenol-induced PKA activation at the PM but permitted PKA activation at the SR, phospholamban phosphorylation, and contractility. Moreover, pretreatment with sotalol in OCT3-KO myocytes prevented norepinephrine-induced PKA activation at both PM and the SR and contractility. CONCLUSIONS: Functional ß1ARs exists at the SR and is critical for PKA-mediated phosphorylation of phospholamban and cardiac contractility upon catecholamine stimulation. Activation of these intracellular ß1ARs requires catecholamine transport via OCT3.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Frequência Cardíaca , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/genética , Fosforilação , Coelhos , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
6.
Eur J Neurosci ; 52(11): 4546-4562, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32725894

RESUMO

Regional alterations in kinetics of catecholamine uptake are due in part to variations in clearance mechanisms. The rate of clearance is a critical determinant of the strength of catecholamine signaling. Catecholamine transmission in the nucleus accumbens core (NAcc) and basolateral amygdala (BLA) is of particular interest due to involvement of these regions in cognition and motivation. Previous work has shown that catecholamine clearance in the NAcc is largely mediated by the dopamine transporter (DAT), but clearance in the BLA is less DAT-dependent. A growing body of literature suggests that organic cation transporter 3 (OCT3) also contributes to catecholamine clearance in both regions. Consistent with different clearance mechanisms between regions, catecholamine clearance is more rapid in the NAcc than in the BLA, though mechanisms underlying this have not been resolved. We compared the expression of DAT and OCT3 and their contributions to catecholamine clearance in the NAcc and BLA. We found DAT protein levels were ~ 4-fold higher in the NAcc than in the BLA, while OCT3 protein expression was similar between the two regions. Immunofluorescent labeling of the two transporters in brain sections confirmed these findings. Ex vivo voltammetry demonstrated that the magnitude of catecholamine release was greater, and the clearance rate was faster in the NAcc than in the BLA. Additionally, catecholamine clearance in the BLA was more sensitive to the OCT3 inhibitor corticosterone, while clearance in the NAcc was more cocaine sensitive. These distinctions in catecholamine clearance may underlie differential effects of catecholamines on behavioral outputs mediated by these regions.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Núcleo Accumbens , Complexo Nuclear Basolateral da Amígdala/metabolismo , Catecolaminas , Cátions , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Núcleo Accumbens/metabolismo
7.
Neurochem Int ; 123: 46-49, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30055194

RESUMO

Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released monoamines. Most studies of monoamine clearance focus on the presynaptic uptake1 transporters SERT, NET and DAT. However, recent studies have demonstrated the expression of the uptake2 transporter OCT3 (organic cation transporter 3), throughout the rodent brain. In contrast to NET, DAT and SERT, OCT3 has higher capacity and lower affinity for substrates, is sodium-independent, and is multi-specific, with the capacity to transport norepinephrine, dopamine, serotonin and histamine. OCT3 is insensitive to inhibition by cocaine and antidepressant drugs but is inhibited directly by the glucocorticoid hormone corticosterone. Thus, OCT3 represents a novel, stress hormone-sensitive, monoamine transport mechanism. Incorporating this transporter into current models of monoaminergic neurotransmission requires information on: A) the cellular and subcellular localization of the transporter; B) the effects of OCT3 inhibitors on monoamine clearance; and C) the consequences of decreased OCT3-mediated transport on physiology and/or behavior. This review summarizes studies describing the anatomical distribution of OCT3, its cellular and subcellular localization, its contribution to the regulation of dopaminergic signaling, and its roles in the regulation of behavior. Together, these and other studies suggest that both Uptake1 and Uptake2 transporters play key roles in regulating monoaminergic neurotransmission and the effects of monoamines on behavior.


Assuntos
Transporte Biológico/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Corticosterona/farmacologia , Fator 3 de Transcrição de Octâmero/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo
8.
Horm Behav ; 104: 173-182, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738736

RESUMO

Contribution to Special Issue on Fast effects of steroids. Corticosteroid hormones act at intracellular glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) to alter gene expression, leading to diverse physiological and behavioral responses. In addition to these classical genomic effects, corticosteroid hormones also exert rapid actions on physiology and behavior through a variety of non-genomic mechanisms, some of which involve GR or MR, and others of which are independent of these receptors. One such GR-independent mechanism involves corticosteroid-induced inhibition of monoamine transport mediated by "uptake2" transporters, including organic cation transporter 3 (OCT3), a low-affinity, high-capacity transporter for norepinephrine, epinephrine, dopamine, serotonin and histamine. Corticosterone directly and acutely inhibits OCT3-mediated transport. This review describes the studies that initially characterized uptake2 processes in peripheral tissues, and outlines studies that demonstrated OCT3 expression and corticosterone-sensitive monoamine transport in the brain. Evidence is presented supporting the hypothesis that corticosterone can exert rapid, GR-independent actions on neuronal physiology and behavior by inhibiting OCT3-mediated monoamine clearance. Implications of this mechanism for glucocorticoid-monoamine interactions in the context-dependent regulation of behavior are discussed.


Assuntos
Comportamento , Glucocorticoides/farmacologia , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento/efeitos dos fármacos , Comportamento/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corticosterona/metabolismo , Corticosterona/farmacologia , Glucocorticoides/metabolismo , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transmissão Sináptica/fisiologia
9.
J Mol Endocrinol ; 60(2): 55-69, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29378866

RESUMO

Glucocorticoid production is gated at the molecular level by the circadian clock in the adrenal gland. Stress influences daily rhythms in behavior and physiology, but it remains unclear how stress affects the function of the adrenal clock itself. Here, we examine the influence of stress on adrenal clock function by tracking PERIOD2::LUCIFERASE (PER2::LUC) rhythms in vitro Relative to non-stressed controls, adrenals from stressed mice displayed marked changes in PER2::LUC rhythms. Interestingly, the effect of stress on adrenal rhythms varied by sex and the type of stress experienced in vivo To investigate the basis of sex differences in the adrenal response to stress, we next stimulated male and female adrenals in vitro with adrenocorticotropic hormone (ACTH). ACTH shifted phase and increased amplitude of adrenal PER2::LUC rhythms. Both phase and amplitude responses were larger in female adrenals than in male adrenals, an observation consistent with previously described sex differences in the physiological response to stress. Lastly, we reversed the sex difference in adrenal clock function using stress and sex hormone manipulations to test its role in driving adrenal responses to ACTH. We find that adrenal responsiveness to ACTH is inversely proportional to the amplitude of adrenal PER2::LUC rhythms. This suggests that larger ACTH responses from female adrenals may be driven by their lower amplitude molecular rhythms. Collectively, these results indicate a reciprocal relationship between stress and the adrenal clock, with stress influencing adrenal clock function and the state of the adrenal clock gating the response to stress in a sexually dimorphic manner.


Assuntos
Glândulas Suprarrenais/fisiopatologia , Relógios Circadianos , Caracteres Sexuais , Estresse Psicológico/fisiopatologia , Doença Aguda , Glândulas Suprarrenais/efeitos dos fármacos , Hormônio Adrenocorticotrópico/farmacologia , Animais , Doença Crônica , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Restrição Física , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
10.
Eur J Neurosci ; 46(10): 2638-2646, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28965353

RESUMO

Stressful and aversive events promote maladaptive reward-seeking behaviors such as drug addiction by acting, in part, on the mesolimbic dopamine system. Using animal models, data from our laboratory and others show that stress and cocaine can interact to produce a synergistic effect on reward circuitry. This effect is also observed when the stress hormone corticosterone is administered directly into the nucleus accumbens (NAc), indicating that glucocorticoids act locally in dopamine terminal regions to enhance cocaine's effects on dopamine signaling. However, prior studies in behaving animals have not provided mechanistic insight. Using fast-scan cyclic voltammetry, we examined the effect of systemic corticosterone on spontaneous dopamine release events (transients) in the NAc core and shell in behaving rats. A physiologically relevant systemic injection of corticosterone (2 mg/kg i.p.) induced an increase in dopamine transient amplitude and duration (both voltammetric measures sensitive to decreases in dopamine clearance), but had no effect on the frequency of transient release events. This effect was compounded by cocaine (2.5 mg/kg i.p.). However, a second experiment indicated that the same injection of corticosterone had no detectable effect on the dopaminergic encoding of a palatable natural reward (saccharin). Taken together, these results suggest that corticosterone interferes with naturally occurring dopamine uptake locally, and this effect is a critical determinant of dopamine concentration specifically in situations in which the dopamine transporter is pharmacologically blocked by cocaine.


Assuntos
Cocaína/administração & dosagem , Corticosterona/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Animais , Corticosterona/administração & dosagem , Masculino , Ratos Sprague-Dawley , Recompensa , Transdução de Sinais
13.
Brain Struct Funct ; 222(4): 1913-1928, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27659446

RESUMO

Organic cation transporter 3 (OCT3) is a high-capacity, low-affinity transporter that mediates corticosterone-sensitive uptake of monoamines including norepinephrine, epinephrine, dopamine, histamine and serotonin. OCT3 is expressed widely throughout the amygdaloid complex and other brain regions where monoamines are key regulators of emotional behaviors affected by stress. However, assessing the contribution of OCT3 to the regulation of monoaminergic neurotransmission and monoamine-dependent regulation of behavior requires fundamental information about the subcellular distribution of OCT3 expression. We used immunofluorescence and immuno-electron microscopy to examine the cellular and subcellular distribution of the transporter in the basolateral amygdaloid complex of the rat and mouse brain. OCT3-immunoreactivity was observed in both glial and neuronal perikarya in both rat and mouse amygdala. Electron microscopic immunolabeling revealed plasma membrane-associated OCT3 immunoreactivity on axonal, dendritic, and astrocytic processes adjacent to a variety of synapses, as well as on neuronal somata. In addition to plasma membrane sites, OCT3 immunolabeling was also observed associated with neuronal and glial endomembranes, including Golgi, mitochondrial and nuclear membranes. Particularly prominent labeling of the outer nuclear membrane was observed in neuronal, astrocytic, microglial and endothelial perikarya. The localization of OCT3 to neuronal and glial plasma membranes adjacent to synaptic sites is consistent with an important role for this transporter in regulating the amplitude, duration, and physical spread of released monoamines, while its localization to mitochondrial and outer nuclear membranes suggests previously undescribed roles for the transporter in the intracellular disposition of monoamines.


Assuntos
Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/ultraestrutura , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas de Transporte de Cátions Orgânicos/análise , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Ratos Sprague-Dawley
14.
Neuropsychopharmacology ; 42(3): 757-765, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27604564

RESUMO

The mechanisms by which stressful life events increase the risk of relapse in recovering cocaine addicts are not well understood. We previously reported that stress, via elevated corticosterone, potentiates cocaine-primed reinstatement of cocaine seeking following self-administration in rats and that this potentiation appears to involve corticosterone-induced blockade of dopamine clearance via the organic cation transporter 3 (OCT3). In the present study, we use a conditioned place preference/reinstatement paradigm in mice to directly test the hypothesis that corticosterone potentiates cocaine-primed reinstatement by blockade of OCT3. Consistent with our findings following self-administration in rats, pretreatment of male C57/BL6 mice with corticosterone (using a dose that reproduced stress-level plasma concentrations) potentiated cocaine-primed reinstatement of extinguished cocaine-induced conditioned place preference. Corticosterone failed to re-establish extinguished preference alone but produced a leftward shift in the dose-response curve for cocaine-primed reinstatement. A similar potentiating effect was observed upon pretreatment of mice with the non-glucocorticoid OCT3 blocker, normetanephrine. To determine the role of OCT3 blockade in these effects, we examined the abilities of corticosterone and normetanephrine to potentiate cocaine-primed reinstatement in OCT3-deficient and wild-type mice. Conditioned place preference, extinction and reinstatement of extinguished preference in response to low-dose cocaine administration did not differ between genotypes. However, corticosterone and normetanephrine failed to potentiate cocaine-primed reinstatement in OCT3-deficient mice. Together, these data provide the first direct evidence that the interaction of corticosterone with OCT3 mediates corticosterone effects on drug-seeking behavior and establish OCT3 function as an important determinant of susceptibility to cocaine use.


Assuntos
Cocaína/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Corticosterona/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Normetanefrina/farmacologia , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Cocaína/administração & dosagem , Corticosterona/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Normetanefrina/administração & dosagem , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Fator 3 de Transcrição de Octâmero/deficiência
15.
Endocrinology ; 157(5): 1895-904, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27007073

RESUMO

Sex differences in glucocorticoid production are associated with increased responsiveness of the adrenal gland in females. However, the adrenal-intrinsic mechanisms that establish sexual dimorphic function remain ill defined. Glucocorticoid production is gated at the molecular level by the circadian clock, which may contribute to sexual dimorphic adrenal function. Here we examine sex differences in the adrenal gland using an optical reporter of circadian clock function. Adrenal glands were cultured from male and female Period2::Luciferase (PER2::LUC) mice to assess clock function in vitro in real time. We confirm that there is a pronounced sex difference in the intrinsic capacity to sustain PER2::LUC rhythms in vitro, with higher amplitude rhythms in adrenal glands collected from males than from females. Changes in adrenal PER2::LUC rhythms over the reproductive life span implicate T as an important factor in driving sex differences in adrenal clock function. By directly manipulating hormone levels in adult mice in vivo, we demonstrate that T increases the amplitude of PER2::LUC rhythms in adrenal glands of both male and female mice. In contrast, we find little evidence that ovarian hormones modify adrenal clock function. Lastly, we find that T in vitro can increase the amplitude of PER2::LUC rhythms in male adrenals but not female adrenals, which suggests the existence of sex differences in the mechanisms of T action in vivo. Collectively these results reveal that activational effects of T alter circadian timekeeping in the adrenal gland, which may have implications for sex differences in stress reactivity and stress-related disorders.


Assuntos
Glândulas Suprarrenais/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas Circadianas Period/genética , Caracteres Sexuais , Diferenciação Sexual/fisiologia , Glândulas Suprarrenais/efeitos dos fármacos , Animais , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Masculino , Camundongos , Diferenciação Sexual/efeitos dos fármacos , Testosterona/farmacologia
16.
J Neurosci ; 34(37): 12504-14, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25209288

RESUMO

The ventral bed nucleus of the stria terminalis (vBNST) has been implicated in stress-induced cocaine use. Here we demonstrate that, in the vBNST, corticotropin releasing factor (CRF) is expressed in neurons that innervate the ventral tegmental area (VTA), a site where the CRF receptor antagonist antalarmin prevents the reinstatement of cocaine seeking by a stressor, intermittent footshock, following intravenous self-administration in rats. The vBNST receives dense noradrenergic innervation and expresses ß adrenergic receptors (ARs). Footshock-induced reinstatement was prevented by bilateral intra-vBNST injection of the ß-2 AR antagonist, ICI-118,551, but not the ß-1 AR antagonist, betaxolol. Moreover, bilateral intra-vBNST injection of the ß-2 AR agonist, clenbuterol, but not the ß-1 agonist, dobutamine, reinstated cocaine seeking, suggesting that activation of vBNST ß-2 AR is both necessary for stress-induced reinstatement and sufficient to induce cocaine seeking. The contribution of a ß-2 AR-regulated vBNST-to-VTA pathway that releases CRF was investigated using a disconnection approach. Injection of ICI-118,551 into the vBNST in one hemisphere and antalarmin into the VTA of the contralateral hemisphere prevented footshock-induced reinstatement, whereas ipsilateral manipulations failed to attenuate stress-induced cocaine seeking, suggesting that ß-2 AR regulate vBNST efferents that release CRF into the VTA, activating CRF receptors, and promoting cocaine use. Last, reinstatement by clenbuterol delivered bilaterally into the vBNST was prevented by bilateral vBNST pretreatment with antalarmin, indicating that ß-2 AR-mediated actions in the vBNST also require local CRF receptor activation. Understanding the processes through which stress induces cocaine seeking should guide the development of new treatments for addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/etiologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Estresse Psicológico/complicações
17.
Neuropharmacology ; 76 Pt B: 383-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23916481

RESUMO

The ability of stressful life events to trigger drug use is particularly problematic for the management of cocaine addiction due to the unpredictable and often uncontrollable nature of stress. For this reason, understanding the neurobiological processes that contribute to stress-related drug use is important for the development of new and more effective treatment strategies aimed at minimizing the role of stress in the addiction cycle. In this review we discuss the neurocircuitry that has been implicated in stress-induced drug use with an emphasis on corticotropin releasing factor actions in the ventral tegmental area (VTA) and an important pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine via actions at beta adrenergic receptors. In addition to the neurobiological mechanisms that underlie stress-induced cocaine seeking, we review findings suggesting that the ability of stressful stimuli to trigger cocaine use emerges and intensifies in an intake-dependent manner with repeated cocaine self-administration. Further, we discuss evidence that the drug-induced neuroadaptations that are necessary for heightened susceptibility to stress-induced drug use are reliant on elevated levels of glucocorticoid hormones at the time of cocaine use. Finally, the potential ability of stress to function as a "stage setter" for drug use - increasing sensitivity to cocaine and drug-associated cues - under conditions where it does not directly trigger cocaine seeking is discussed. As our understanding of the mechanisms through which stress promotes drug use advances, the hope is that so too will the available tools for effectively managing addiction, particularly in cocaine addicts whose drug use is stress-driven. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Neurobiologia , Recompensa , Estresse Psicológico/complicações , Animais , Transtornos Relacionados ao Uso de Cocaína/complicações , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/patologia , Hormônio Liberador da Corticotropina/metabolismo , Glucocorticoides/metabolismo , Humanos , Norepinefrina/metabolismo , Área Tegmentar Ventral
18.
J Neurosci ; 33(29): 11800-10, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23864669

RESUMO

Stressful life events are important contributors to relapse in recovering cocaine addicts, but the mechanisms by which they influence motivational systems are poorly understood. Studies suggest that stress may "set the stage" for relapse by increasing the sensitivity of brain reward circuits to drug-associated stimuli. We examined the effects of stress and corticosterone on behavioral and neurochemical responses of rats to a cocaine prime after cocaine self-administration and extinction. Exposure of rats to acute electric footshock stress did not by itself reinstate drug-seeking behavior but potentiated reinstatement in response to a subthreshold dose of cocaine. This effect of stress was not observed in adrenalectomized animals, and was reproduced in nonstressed animals by administration of corticosterone at a dose that reproduced stress-induced plasma levels. Pretreatment with the glucocorticoid receptor antagonist RU38486 did not block the corticosterone effect. Corticosterone potentiated cocaine-induced increases in extracellular dopamine in the nucleus accumbens (NAc), and pharmacological blockade of NAc dopamine receptors blocked corticosterone-induced potentiation of reinstatement. Intra-accumbens administration of corticosterone reproduced the behavioral effects of stress and systemic corticosterone. Corticosterone treatment acutely decreased NAc dopamine clearance measured by fast-scan cyclic voltammetry, suggesting that inhibition of uptake2-mediated dopamine clearance may underlie corticosterone effects. Consistent with this hypothesis, intra-accumbens administration of the uptake2 inhibitor normetanephrine potentiated cocaine-induced reinstatement. Expression of organic cation transporter 3, a corticosterone-sensitive uptake2 transporter, was detected on NAc neurons. These findings reveal a novel mechanism by which stress hormones can rapidly regulate dopamine signaling and contribute to the impact of stress on drug intake.


Assuntos
Cocaína/administração & dosagem , Corticosterona/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Dopamina/metabolismo , Comportamento de Procura de Droga/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Adrenalectomia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Condicionamento Operante/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Eletrochoque , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Antagonistas de Hormônios/farmacologia , Masculino , Mifepristona/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/antagonistas & inibidores , Autoadministração , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/fisiologia
19.
J Chem Neuroanat ; 52: 36-43, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23694905

RESUMO

The intercalated cell groups of the amygdala (ITCs) are clusters of GABAergic neurons which exert powerful modulatory control of amygdala output, and are thought to play key roles in the extinction of conditioned fear responses. Dopamine, acting through D1 receptors, inhibits ITC neuronal activity, an action that has the potential to disinhibit amygdala activity, leading to changes in behavioral responses. Dopaminergic neurotransmission in the ITC occurs through a combination of synaptic and volume transmission. Thus, mechanisms, including transport mechanisms, that regulate extracellular dopamine concentrations in the ITC, are likely to be important determinants of amygdala function. We have recently demonstrated the expression of organic cation transporter 3 (OCT3), a high-capacity transporter for dopamine and other monoamines, throughout the rat brain. In this study, we used immunohistochemical and immunofluorescence techniques to examine the distribution of OCT3 in the ITC, to identify the phenotype of OCT3-expressing cells, and to describe the spatial relationships of OCT3 to dopaminergic terminals and dopamine D1 receptors in these areas. We observed high densities of OCT3-immunoreactive perikarya and punctae throughout the D1 receptor-rich main, anterior and paracapsular ITCs, in contrast with the basolateral amygdala, where OCT3 immunoreactive perikarya and puncta were observed at much lower density. OCT3-immunoreactive perikarya in the ITC were identified as neurons. Tyrosine hydroxylase-immunoreactive fibers in the ITC were immunonegative for OCT3, though OCT3-immunoreactive punctae were observed in close proximity to TH+ terminals. Punctate OCT3-immunoreactivity in the ITCs was observed in very close proximity (<1 µm) to D1 receptor immunoreactivity. These anatomical data are consistent with the hypothesis that OCT3 plays a central role in regulating dopaminergic neurotransmission in the ITC, and that it represents a post- or peri-synaptic dopamine clearance mechanism. Inhibition of OCT3-mediated transport by corticosterone may represent a mechanism by which acute stress alters dopaminergic neurotransmission in the amygdala, leading to alterations in fear and anxiety-like behavior.


Assuntos
Tonsila do Cerebelo/metabolismo , Dopamina/metabolismo , Neurônios/metabolismo , Proteínas de Transporte de Cátions Orgânicos/biossíntese , Estresse Psicológico/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
20.
Physiol Behav ; 104(2): 306-11, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21081135

RESUMO

In addition to exerting actions via mineralocorticoid and glucocorticoid receptors, corticosteroids also act by inhibiting uptake(2), a high-capacity monoamine transport system originally described in peripheral tissues. Recent studies have demonstrated that uptake(2) transporters are expressed in the brain and play roles in monoamine clearance, suggesting that they mediate some corticosteroid effects on physiological and behavioral processes. However, the sensitivity of brain uptake(2) to many natural and synthetic corticosteroids has not been characterized. Cultured rat cerebellar granule neurons (CGNs) were previously shown to exhibit corticosterone-sensitive accumulation of the uptake(2) substrate 1-methyl-4-phenylpyridinium (MPP(+)). We examined the expression of uptake(1) and uptake(2) transporters in CGNs, and tested the effects of a variety of natural and synthetic corticosteroids on accumulation of [(3)H]-MPP(+) by these cells. Cultured rat CGNs expressed mRNA for three uptake(2)-like transporters: organic cation transporters 1 and 3, and the plasma membrane monoamine transporter. They did not express mRNA for the dopamine or norepinephrine transporters, and expressed very little mRNA for the serotonin reuptake transporter. Accumulation of [(3)H]-MPP(+) by CGNs was dose-dependently inhibited by corticosterone and decynium-22, known inhibitors of uptake(2). Accumulation of MPP(+) was also dose-dependently inhibited, with varying efficacies, by aldosterone, 11-deoxycorticosterone, cortisol, and cortisone, and by the synthetic glucocorticoids betamethasone, dexamethasone and prednisolone, and the glucocorticoid receptor antagonist RU38486. These studies demonstrate that uptake(2) in the CNS is inhibited by a variety of natural and synthetic corticosteroids, and suggest that inhibition of uptake(2)-mediated monoamine clearance may underlie some behavioral and physiological effects of these hormones.


Assuntos
Corticosteroides/farmacologia , Cerebelo/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Concentração Inibidora 50 , Masculino , Ácidos Mandélicos/metabolismo , Proteínas de Membrana Transportadoras/genética , Quinolinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Trítio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA