Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 162-165, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31945869

RESUMO

The treatment of choice for the unresectable cholangiocarcinoma is based on biliary decompression procedures. Despite stent placement is the standard of care, it is related to well-known complications. Hence, alternative techniques were proposed. Ideally, they should guarantee an adequate intraductal disobstruction, without injuring the surrounding tissues.This pre-clinical study aims to investigate the thermal effects of the laser ablation (LA) in the biliary tree, in terms of intraductal and surrounding tissue temperature achieved with different laser settings. The common bile ducts (in their upper and lower portions) of two pigs were ablated for 6 minutes with a diode laser at 3 W and 5 W. A custom-made laser applicator was used to obtain a circumferential ablation within the ducts. The intraductal temperature (Tid) was monitored by means of a fiber Bragg grating (FBG) sensor, while an infrared thermal camera monitored the T distribution in the surrounding tissues (Tsup). A maximum T difference of 65 °C and 57 °C was evidenced between the two power settings for the Tid measured in the upper and lower ducts, respectively. The mean difference between Tid and the averaged Tsup values was evaluated. At 5 W, a difference of 37±3 °C and 44±10 °C were obtained for the upper and lower ducts, respectively. At 3 W, a T difference of 2±1 °C was obtained for the upper biliary duct, while a difference of 8±1 °C was documented for the lower duct. Based on the results obtained in this preliminary study, the possibility to equip the laser probe with temperature sensor can improve the control and the safety of the procedure; this solution will guarantee the monitoring of the treatment while preserving the lumen and the surrounding structures.


Assuntos
Ductos Biliares , Terapia a Laser , Animais , Lasers Semicondutores , Suínos , Temperatura
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 873-876, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060011

RESUMO

Thermal treatments are a valid clinical option in the management of several solid tumors. The difficulties to perform an accurate prediction improve the selectivity of the treatment effects represent the main hurdles in the spread of these techniques. Among other solutions, thermometric techniques are gaining acceptance in monitoring the effects of thermal treatments because they provide a clear end-point to obtain the complete removal of cancer without damaging the surrounding healthy tissue. This paper proposes a custom needle-like probe made of carbon fibers to embed seven fiber Bragg grating (FBG) sensors. This tool aims at a multiple points monitoring the tissue temperature during the thermal procedures, streamlining the FBG sensors insertion within the organ. After the description of the probe manufacturing, we reported the calibration of the seven sensors embedded within the probe, their step response, and the feasibility assessment of the probe for temperature monitoring during laser ablation on animal model (both in vivo and ex vivo). Results show that the proposed probe is easily maneuverable by the clinician, the sensors have a linear response with the temperature and a short step response; moreover, the probe allows measuring the temperature in seven points of the tissue; finally, it can be used during CTand MR-guided procedures without causing any artifact to the images. Thanks to these features the probe may be an useful solution to improve the safety and the outcomes of minimally invasive thermal ablation procedures, so to spread these procedures in the clinical field.


Assuntos
Temperatura , Animais , Carbono , Fibra de Carbono , Tecnologia de Fibra Óptica , Hipertermia Induzida , Termômetros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA