RESUMO
The flavoenzyme proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ1-pyrroline-5-carboxylate. The enzyme is a target for chemical probe discovery because of its role in the metabolism of certain cancer cells. N-propargylglycine is the first and best characterized mechanism-based covalent inactivator of PRODH. This compound consists of a recognition module (glycine) that directs the inactivator to the active site and an alkyne warhead that reacts with the FAD after oxidative activation, leading to covalent modification of the FAD N5 atom. Here we report structural and kinetic data on analogs of N-propargylglycine with the goals of understanding the initial docking step of the inactivation mechanism and to test the allyl group as a warhead. The crystal structures of PRODH complexed with unreactive analogs in which N is replaced by S show how the recognition module mimics the substrate proline by forming ion pairs with conserved arginine and lysine residues. Further, the C atom adjacent to the alkyne warhead is optimally positioned for hydride transfer to the FAD, providing the structural basis for the first bond-breaking step of the inactivation mechanism. The structures also suggest new strategies for designing improved N-propargylglycine analogs. N-allylglycine, which consists of a glycine recognition module and allyl warhead, is shown to be a covalent inactivator; however, it is less efficient than N-propargylglycine in both enzyme inactivation and cellular assays. Crystal structures of the N-allylglycine-inactivated enzyme are consistent with covalent modification of the N5 by propanal.
RESUMO
The clinically used antihypertensive agent hydralazine rapidly generates hydrazone-derived adducts by reaction with apurinic/apyrimidinic (also known as abasic or AP) sites in many different sequences of duplex DNA. The reaction rates are comparable to those of some AP-trapping reagents previously described as "ultrafast." Initially, reversible formation of a hydrazone adduct is followed by an oxidative cyclization reaction that generates a chemically stable triazolo[3,4-a]phthalazine adduct. The net result is that the reaction of hydralazine with AP sites in duplex DNA yields a rapid and irreversible adduct formation. Although the hydrazone and triazolo[3,4-a]phthalazine adducts differ by only two mass units, it was possible to use MALDI-TOF-MS and ESI-QTOF-nanospray-MS to quantitatively characterize mixtures of these adducts by deconvolution of overlapping isotope envelopes. Reactions of hydralazine with the endogenous ketone pyruvate do not prevent the formation of the hydralazine-AP adducts, providing further evidence that these adducts have the potential to form in cellular DNA. AP sites are ubiquitous in cellular DNA, and rapid, irreversible adduct formation by hydralazine could be relevant to the pathogenesis of systemic drug-induced lupus erythematosus experienced by some patients. Finally, hydralazine might be developed as a probe for the detection of AP sites, the study of cellular BER, and marking the location of AP sites in DNA-sequencing analyses.
Assuntos
Adutos de DNA , DNA , Hidralazina , Ftalazinas , Hidralazina/química , DNA/química , DNA/efeitos dos fármacos , Adutos de DNA/química , Ftalazinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Anti-Hipertensivos/química , Triazóis/química , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
The reaction of 1,2-aminothiol groups with aldehyde residues in aqueous solution generates thiazolidine products, and this process has been developed as a catalyst-free click reaction for bioconjugation. The work reported here characterized reactions of the biologically relevant 1,2-aminothiols including cysteamine, cysteine methyl ester, and peptides containing N-terminal cysteine residues with the aldehyde residue of apurinic/apyrimidinic (AP) sites in DNA oligomers. These 1,2-aminothiol-containing compounds rapidly generated adducts with AP sites in single-stranded and double-stranded DNA. NMR and MALDI-TOF-MS analyses provided evidence that the reaction generated a thiazolidine product. Conversion of an AP site to a thiazolidine-AP adduct protected against the rapid cleavage normally induced at AP sites by the endonuclease action of the enzyme APE1 and the AP-lyase activity of the biogenic amine spermine. In the presence of excess 1,2-aminothiols, the thiazolidine-AP adducts underwent slow strand cleavage via a ß-lyase reaction that generated products with 1,2-aminothiol-modified sugar residues on the 3'-end of the strand break. In the absence of excess 1,2-aminothiols, the thiazolidine-AP adducts dissociated to release the parent AP-containing oligonucleotide. The properties of the thiazolidine-AP adducts described here mirror critical properties of SRAP proteins HMCES and YedK that capture AP sites in single-stranded regions of cellular DNA and protect them from cleavage.
Assuntos
Cisteína/análogos & derivados , Adutos de DNA , Cisteamina , Reparo do DNA , Tiazolidinas/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/química , Peptídeos , Aldeídos , Dano ao DNARESUMO
Recent studies have defined a novel pathway for the repair of interstrand cross-links derived from the reaction of an adenine residue with an apurinic/apyrimidinic (AP) site on the opposing strand of DNA (dA-AP ICL). Stalling of a replication fork at the dA-AP ICL triggers TRAIP-dependent ubiquitylation of the CMG helicase that recruits the base excision repair glycosylase NEIL3 to the lesion. NEIL3 unhooks the dA-AP ICL to regenerate the native adenine residue on one strand and an AP site on the other strand. Covalent capture of the abasic site by the SRAP protein HMCES protects against genomic instability that would result from cleavage of the abasic site in the context of single-stranded DNA at the replication fork. After repair synthesis moves the HMCES-AP adduct into the context of double-stranded DNA, the DNA-protein cross-link is resolved by a nonproteolytic mechanism involving dissociation of thiazolidine attachment. The AP site in duplex DNA is then repaired by the base excision repair pathway.
Assuntos
Reparo do DNA , Reparo por Excisão , DNA/química , Dano ao DNA , AdeninaRESUMO
Apurinic/apyrimidinic (AP) sites, that is, abasic sites, are among the most frequently induced DNA lesions. Spontaneous or DNA glycosylase-mediated ß-elimination of the 3'-phosphoryl group can lead to strand cleavages at AP sites to yield a highly reactive, electrophilic 3'-phospho-α,ß-unsaturated aldehyde (3'-PUA) remnant. The latter can react with amine or thiol groups of biological small molecules, DNA, and proteins to yield various damaged 3'-end products. Considering its high intracellular concentration, glutathione (GSH) may conjugate with 3'-PUA to yield 3-glutathionyl-2,3-dideoxyribose (GS-ddR), which may constitute a significant, yet previously unrecognized endogenous lesion. Here, we developed a liquid chromatography tandem mass spectroscopy method, in combination with the use of a stable isotope-labeled internal standard, to quantify GS-ddR in genomic DNA of cultured human cells. Our results revealed the presence of GS-ddR in the DNA of untreated cells, and its level was augmented in cells upon exposure to an alkylating agent, N-methyl-N-nitrosourea (MNU). In addition, inhibition of AP endonuclease (APE1) led to an elevated level of GS-ddR in the DNA of MNU-treated cells. Together, we reported here, for the first time, the presence of appreciable levels of GS-ddR in cellular DNA, the induction of GS-ddR by a DNA alkylating agent, and the role of APE1 in modulating its level in human cells.
Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Humanos , Animais , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Metilnitrosoureia , Dano ao DNA , DNA/química , Alquilantes , Mamíferos/metabolismoRESUMO
The experiments described here examined the effects of reaction conditions, various additives, and local sequence on the formation and stability interstrand cross-links (ICLs) derived from the reaction of an apurinic/apyrimidinic (AP) site with the exocyclic amino group of an adenine residue on the opposing strand in duplex DNA. Cross-link formation was observed in a range of different buffers, with faster formation rates observed at pH 5. Inclusion of the base excision repair enzyme alkyladenine DNA glycosylase (hAAG) which binds tightly to AP-containing duplexes decreased, but did not completely prevent, formation of the dA-AP ICL. Formation of the dA-AP ICL was not altered by the presence of the biological metal ion Mg2+ or the biological thiol, glutathione. Several organocatalysts of imine formation did not enhance the rate of dA-AP ICL formation. Duplex length did not have a large effect on dA-AP yield, so long as the melting temperature of the duplex was not significantly below the reaction temperature (the duplex must remain hybridized for efficient ICL formation). Formation of the dA-AP ICL was examined in over 40 different sequences that varied the neighboring and opposing bases at the cross-linking site. The results indicate that ICL formation can occur in a wide variety of sequence contexts under physiological conditions. Formation of the dA-AP ICL was strongly inhibited by the aldehyde-trapping agents methoxyamine and hydralazine, by NaBH3CN, by the intercalator ethidium bromide, and by the minor groove-binding agent netropsin. ICL formation was inhibited to some extent in bicarbonate and Tris buffers. The dA-AP ICL showed substantial inherent stability under a variety of conditions and was not a substrate for AP-processing enzymes APE1 or Endo IV. Finally, we characterized cross-link formation in a small (11 bp) stem-loop (hairpin) structure and in DNA-RNA hybrid duplexes.
RESUMO
The hydrolytic loss of coding bases from cellular DNA is a common and unavoidable reaction. The resulting abasic sites can undergo ß-elimination of the 3'-phosphoryl group to generate a strand break with an electrophilic α,ß-unsaturated aldehyde residue on the 3'-terminus. The work reported here provides evidence that the thiol residue of the cellular tripeptide glutathione rapidly adds to the alkenal group on the 3'-terminus of an AP-derived strand break. The resulting glutathionylated adduct is the only major cleavage product observed when ß-elimination occurs at an AP site in the presence of glutathione. Formation of the glutathionylated cleavage product is reversible, but in the presence of physiological concentrations of glutathione, the adduct persists for days. Biochemical experiments provided evidence that the 3'-phosphodiesterase activity of the enzyme apurinic/apyrimidinic endonuclease (APE1) can remove the glutathionylated sugar remnant from an AP-derived strand break to generate the 3'OH residue required for repair via base excision or single-strand break repair pathways. The results suggest that a previously unrecognized 3'glutathionylated sugar remnantâand not the canonical α,ß-unsaturated aldehyde end groupâmay be the true strand cleavage product arising from ß-elimination at an abasic site in cellular DNA. This work introduces the 3'glutathionylated cleavage product as the major blocking group that must be trimmed to enable repair of abasic site-derived strand breaks by the base excision repair or single-strand break repair pathways.
Assuntos
Dano ao DNA , Reparo do DNA , Aldeídos , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Glutationa , AçúcaresRESUMO
Hydrolytic loss of nucleobases from the deoxyribose backbone of DNA is one of the most common unavoidable types of damage in synthetic and cellular DNA. The reaction generates abasic sites in DNA, and it is important to understand the properties of these lesions. The acidic nature of the α-protons of the ring-opened abasic aldehyde residue facilitates the ß-elimination of the 3'-phosphoryl group. This reaction is expected to generate a DNA strand break with a phosphoryl group on the 5'-terminus and a trans-α,ß-unsaturated aldehyde residue on the 3'-terminus; however, a handful of studies have identified noncanonical sugar remnants on the 3'-terminus, suggesting that the products arising from strand cleavage at apurinic/apyrimidinic sites in DNA may be more complex than commonly thought. We characterized the strand cleavage induced by the treatment of an abasic site-containing DNA oligonucleotide with heat, NaOH, piperidine, spermine, and the base excision repair glycosylases Fpg and Endo III. The results showed that under multiple conditions, cleavage at an abasic site in a DNA oligomer generated noncanonical sugar remnants including cis-α,ß-unsaturated aldehyde, 2-deoxyribose, and 3-thio-2,3-dideoxyribose products on the 3'-terminus of the strand break.
Assuntos
Aminas/farmacologia , DNA Glicosilases/metabolismo , DNA/efeitos dos fármacos , DNA/metabolismo , Temperatura Alta , Hidróxido de Sódio/farmacologia , Aminas/química , Clivagem do DNA , Reparo do DNA , Hidróxido de Sódio/químicaRESUMO
Abasic sites are common in cellular and synthetic DNA. As a result, it is important to characterize the chemical fate of these lesions. Amine-catalyzed strand cleavage at abasic sites in DNA is an important process in which conversion of small amounts of the ring-opened abasic aldehyde residue to an iminium ion facilitates ß-elimination of the 3'-phosphoryl group. This reaction generates a trans-α,ß-unsaturated iminium ion on the 3'-terminus of the strand break as an obligate intermediate. The canonical product expected from amine-catalyzed cleavage at an AP site is the corresponding trans-α,ß-unsaturated aldehyde sugar remnant resulting from hydrolysis of this iminium ion. Interestingly, a handful of studies have reported noncanonical 3'-sugar remnants generated by amine-catalyzed strand cleavage, but the formation and properties of these products are not well-understood. To address this knowledge gap, a nucleoside system was developed that enabled chemical characterization of the sugar remnants generated by amine-catalyzed ß-elimination in the 2-deoxyribose system. The results predict that amine-catalyzed strand cleavage at an AP site under physiological conditions has the potential to reversibly generate noncanonical cleavage products including cis-alkenal, 3-thio-2,3-dideoxyribose, and 2-deoxyribose groups alongside the canonical trans-alkenal residue on the 3'-terminus of the strand break. Thus, the model reactions provide evidence that the products generated by amine-catalyzed strand cleavage at abasic sites in cellular DNA may be more complex that commonly thought, with trans-α,ß-unsaturated iminium ion intermediates residing at the hub of interconverting product mixtures. The results expand the list of possible 3'-sugar remnants arising from amine-catalyzed cleavage of abasic sites in DNA that must be chemically or enzymatically removed for the completion of base excision repair and single-strand break repair in cells.
Assuntos
Aminas/química , Materiais Biomiméticos/química , DNA/efeitos dos fármacos , Desoxirribose/química , Nucleosídeos/química , Catálise , Dano ao DNA , Reparo do DNA , Conformação de Ácido NucleicoRESUMO
Interstrand DNA cross-links are important in biology, medicinal chemistry, and materials science. Accordingly, methods for the targeted installation of interstrand cross-links in DNA duplexes may be useful in diverse fields. Here, a simple procedure is reported for the preparation of DNA duplexes containing site-specific, chemically defined interstrand cross-links. The approach involves sequential reductive amination reactions between diamine linkers and two abasic (apurinic/apyrimidinic, AP) sites on complementary oligodeoxynucleotides. Use of the symmetrical triamine, tris(2-aminoethyl)amine, in this reaction sequence enabled the preparation of a cross-linked DNA duplex bearing a derivatizable aminoethyl group.
Assuntos
Reagentes de Ligações Cruzadas/química , DNA/síntese química , Diaminas/química , Oligodesoxirribonucleotídeos/química , Aminação , DNA/química , Estrutura MolecularRESUMO
Proline dehydrogenase (PRODH) is a flavoenzyme that catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ1-pyrroline-5-carboxylate. PRODH has emerged as a cancer therapy target because of its involvement in the metabolic reprogramming of cancer cells. Here, we report the discovery of a new class of PRODH inactivator, which covalently and irreversibly modifies the FAD in a light-dependent manner. Two examples, 1,3-dithiolane-2-carboxylate and tetrahydrothiophene-2-carboxylate, have been characterized using X-ray crystallography (1.52-1.85 Å resolution), absorbance spectroscopy, and enzyme kinetics. The structures reveal that in the dark, these compounds function as classical reversible, proline analogue inhibitors. However, exposure of enzyme-inhibitor cocrystals to bright white light induces decarboxylation of the inhibitor and covalent attachment of the residual S-heterocycle to the FAD N5 atom, locking the cofactor into a reduced, inactive state. Spectroscopic measurements of the inactivation process in solution confirm the requirement for light and show that blue light is preferred. Enzyme activity assays show that the rate of inactivation is enhanced by light and that the inactivation is irreversible. We also demonstrate the photosensitivity of cancer cells to one of these compounds. A possible mechanism is proposed involving photoexcitation of the FAD, while the inhibitor is noncovalently bound in the active site, followed by electron transfer, decarboxylation, and radical combination steps. Our results could lead to the development of photopharmacological drugs targeting PRODH.
Assuntos
Antineoplásicos/farmacologia , Compostos Heterocíclicos/farmacologia , Luz , Prolina Oxidase/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Difração de Raios XRESUMO
Interstrand DNA cross-links (ICLs) are cytotoxic because they block the strand separation required for read-out and replication of the genetic information in duplex DNA. The unavoidable formation of ICLs in cellular DNA may contribute to aging, neurodegeneration, and cancer. Here, we describe the formation and properties of a structurally complex ICL derived from an apurinic/apyrimidinic (AP) site, which is one of the most common endogenous lesions in cellular DNA. The results characterize a cross-link arising from aza-Michael addition of the N2-amino group of a guanine residue to the electrophilic sugar remnant generated by spermine-mediated strand cleavage at an AP site in duplex DNA. An α,ß-unsaturated iminium ion is the critical intermediate involved in ICL formation. Studies employing the bacteriophage φ29 polymerase provided evidence that this ICL can block critical DNA transactions that require strand separation. The results of biochemical studies suggest that this complex strand break/ICL might be repaired by a simple mechanism in which the 3'-exonuclease action of the enzyme apurinic/apyrimidinic endonuclease (APE1) unhooks the cross-link to initiate repair via the single-strand break repair pathway.
Assuntos
Dano ao DNA , Reparo do DNA , DNA/química , Conformação de Ácido NucleicoRESUMO
The formation of interstrand cross-links in duplex DNA is important in biology, medicine, and biotechnology. Interstrand cross-links arising from the reaction of the aldehyde residue of an abasic (apurinic or AP) site with the exocyclic amino groups of guanine or adenine residues on the opposing strand of duplex DNA have previously been characterized. The canonical nucleobase cytosine has an exocyclic amino group but its ability to form interstrand cross-links by reaction with an AP site has not been characterized before now. Here it is shown that substantial yields of interstrand cross-links are generated in sequences having a mispaired cytosine residue located one nucleotide to the 3'-side of the AP site on the opposing strand (e.g., 5'XA/5'CA, where X = AP). Formation of the dC-AP cross-link is pH-dependent, with significantly higher yields at pH 5 than pH 7. Once formed, the dC-AP cross-link is quite stable, showing less than 5% dissociation over the course of 96 h at pH 7 and 37 °C. No significant yields of cross-link are observed when the cytosine residue is paired with its Watson-Crick partner guanine. It was also shown that a single AP site can engage with multiple nucleobase cross-linking partners in some sequences. Specifically, the dG-AP and dC-AP cross-links coexist in dynamic equilibrium in the sequence 5'CXA/5'CAG (X = AP). In this sequence, the dC-AP cross-link dominates. However, in the presence of NaBH3CN, irreversible reduction of small amounts of the dG-AP cross-link present in the mixture shifts the equilibria away from the dC-AP cross-link toward good yields of the dG-APred cross-link.
Assuntos
Reagentes de Ligações Cruzadas/química , Citosina/química , DNA/química , Reagentes de Ligações Cruzadas/síntese química , Conformação de Ácido NucleicoRESUMO
Genome integrity is essential for life and, as a result, DNA repair systems evolved to remove unavoidable DNA lesions from cellular DNA. Many forms of life possess the capacity to remove interstrand DNA cross-links (ICLs) from their genome but the identity of the naturally-occurring, endogenous substrates that drove the evolution and retention of these DNA repair systems across a wide range of life forms remains uncertain. In this review, we describe more than a dozen chemical processes by which endogenous ICLs plausibly can be introduced into cellular DNA. The majority involve DNA degradation processes that introduce aldehyde residues into the double helix or reactions of DNA with endogenous low molecular weight aldehyde metabolites. A smaller number of the cross-linking processes involve reactions of DNA radicals generated by oxidation.
Assuntos
Adutos de DNA/metabolismo , Reparo do DNA , Animais , HumanosRESUMO
Abasic (AP) sites are one of the most common forms of DNA damage. The deoxyribose ring of AP sites undergoes anomerization between α and ß configurations, via an electrophilic aldehyde intermediate. In sequences where an adenine residue is located on the opposing strand and offset 1 nt to the 3' side of the AP site, the nucleophilic N6-dA amino group can react with the AP aldehyde residue to form an interstrand cross-link (ICL). Here, we present an experimentally determined structure of the dA-AP ICL by NMR spectroscopy. The ICL was constructed in the oligodeoxynucleotide 5'-d(T1A2T3G4T5C6T7A8A9G10T11T12C13A14T15C16T17A18)-3':5'-d(T19A20G21A22T23G24A25A26C27X28T29A30G31A32C33A34T35A36)-3' (X=AP site), with the dA-AP ICL forming between A8 and X28. The NMR spectra indicated an ordered structure for the cross-linked DNA duplex and afforded detailed spectroscopic resonance assignments. Structural refinement, using molecular dynamics calculations restrained by NOE data (rMD), revealed the structure of the ICL. In the dA-AP ICL, the 2'-deoxyribosyl ring of the AP site was ring-closed and in the ß configuration. Juxtapositioning the N6-dA amino group and the aldehydic C1 of the AP site within bonding distance while simultaneously maintaining two flanking unpaired A9 and T29 bases stacked within the DNA is accomplished by the unwinding of the DNA at the ICL. The structural data is discussed in the context of recent studies describing the replication-dependent unhooking of the dA-AP ICL by the base excision repair glycosylase NEIL3.
Assuntos
Adenina/química , Aldeídos/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA , DNA/química , Reparo do DNA , Humanos , Conformação de Ácido NucleicoRESUMO
The NEIL3 DNA glycosylase maintains genome integrity during replication by excising oxidized bases from single-stranded DNA (ssDNA) and unhooking interstrand cross-links (ICLs) at fork structures. In addition to its N-terminal catalytic glycosylase domain, NEIL3 contains two tandem C-terminal GRF-type zinc fingers that are absent in the other NEIL paralogs. ssDNA binding by the GRF-ZF motifs helps recruit NEIL3 to replication forks converged at an ICL, but the nature of DNA binding and the effect of the GRF-ZF domain on catalysis of base excision and ICL unhooking is unknown. Here, we show that the tandem GRF-ZFs of NEIL3 provide affinity and specificity for DNA that is greater than each individual motif alone. The crystal structure of the GRF domain shows that the tandem ZF motifs adopt a flexible head-to-tail configuration well-suited for binding to multiple ssDNA conformations. Functionally, we establish that the NEIL3 GRF domain inhibits glycosylase activity against monoadducts and ICLs. This autoinhibitory activity contrasts GRF-ZF domains of other DNA-processing enzymes, which typically use ssDNA binding to enhance catalytic activity, and suggests that the C-terminal region of NEIL3 is involved in both DNA damage recruitment and enzymatic regulation.
Assuntos
DNA de Cadeia Simples/metabolismo , N-Glicosil Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/química , Humanos , Camundongos , N-Glicosil Hidrolases/antagonistas & inibidores , N-Glicosil Hidrolases/genética , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Dedos de ZincoRESUMO
Aldehyde dehydrogenase 9A1 (ALDH9A1) is a human enzyme that catalyzes the NAD+-dependent oxidation of the carnitine precursor 4-trimethylaminobutyraldehyde to 4-N-trimethylaminobutyrate. Here we show that the broad-spectrum ALDH inhibitor diethylaminobenzaldehyde (DEAB) reversibly inhibits ALDH9A1 in a time-dependent manner. Possible mechanisms of inhibition include covalent reversible inactivation involving the thiohemiacetal intermediate and slow, tight-binding inhibition. Two crystal structures of ALDH9A1 are reported, including the first of the enzyme complexed with NAD+. One of the structures reveals the active conformation of the enzyme, in which the Rossmann dinucleotide-binding domain is fully ordered and the inter-domain linker adopts the canonical ß-hairpin observed in other ALDH structures. The oligomeric structure of ALDH9A1 was investigated using analytical ultracentrifugation, small-angle X-ray scattering, and negative stain electron microscopy. These data show that ALDH9A1 forms the classic ALDH superfamily dimer-of-dimers tetramer in solution. Our results suggest that the presence of an aldehyde substrate and NAD+ promotes isomerization of the enzyme into the active conformation.
Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Benzaldeídos/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Cinética , NAD/metabolismo , Ligação Proteica , Estrutura Quaternária de ProteínaRESUMO
Proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the FAD-dependent 2-electron oxidation of l-proline to Δ1-pyrroline-5-carboxylate. PRODH has emerged as a possible cancer therapy target, and thus the inhibition of PRODH is of interest. Here we show that the proline analogue thiazolidine-2-carboxylate (T2C) is a mechanism-based inactivator of PRODH. Structures of the bifunctional proline catabolic enzyme proline utilization A (PutA) determined from crystals grown in the presence of T2C feature strong electron density for a 5-membered ring species resembling l-T2C covalently bound to the N5 of the FAD in the PRODH domain. The modified FAD exhibits a large butterfly bend angle, indicating that the FAD is locked into the 2-electron reduced state. Reduction of the FAD is consistent with the crystals lacking the distinctive yellow color of the oxidized enzyme and stopped-flow kinetic data showing that T2C is a substrate for the PRODH domain of PutA. A mechanism is proposed in which PRODH catalyzes the oxidation of T2C at the C atom adjacent to the S atom of the thiazolidine ring (C5). Then, the N5 atom of the reduced FAD attacks the C5 of the oxidized T2C species, resulting in the covalent adduct observed in the crystal structure. To our knowledge, this is the first report of T2C inactivating (or inhibiting) PRODH or any other flavoenzyme. These results may inform the design of new mechanism-based inactivators of PRODH for use as chemical probes to study the roles of proline metabolism in cancer.
Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Dinitrocresóis/química , Inibidores Enzimáticos/química , Prolina Oxidase/antagonistas & inibidores , Prolina/análogos & derivados , Tiazolidinas/química , Proteínas de Bactérias/química , Cristalografia por Raios X , Cinética , Modelos Químicos , Oxirredução , Prolina/química , Prolina Oxidase/química , Sinorhizobium meliloti/enzimologiaRESUMO
Interstrand DNA-DNA cross-links (ICLs) are generated by endogenous processes, drugs, and environmental toxins. Understanding the cellular pathways by which various ICLs are repaired is critical to understanding their biological effects. Recent studies showed that replication-dependent repair of an ICL derived from the reaction of an abasic (AP) site with an adenine residue (dA) on the opposing strand of duplex DNA proceeds via a novel mechanism in which the DNA glycosylase NEIL3 unhooks the ICL. Here we examined the ability of the glycosylase domain of murine NEIL3 (MmuNEIL3-GD) to unhook dA-AP ICLs. The enzyme selectively unhooks the dA-AP ICL located at the duplex/single-strand junction of splayed duplexes that model the strand-separated DNA at the leading edge of a replication fork. We show that the ability to unhook the dA-AP ICL is a specialized function of NEIL3 as this activity is not observed in other BER enzymes. Importantly, NEIL3 only unhooks the dA-AP ICL when the AP residue is located on what would be the leading template strand of a model replication fork. The same specificity for the leading template strand was observed with a 5,6-dihydrothymine monoadduct, demonstrating that this preference is a general feature of the glycosylase and independent of the type of DNA damage. Overall, the results show that the glycosylase domain of NEIL3, lacking the C-terminal NPL4 and GRF zinc finger motifs, is competent to unhook the dA-AP ICL in splayed substrates and independently enforces important substrate preferences on the repair process.
Assuntos
DNA/química , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Animais , Reagentes de Ligações Cruzadas , Camundongos , Conformação de Ácido Nucleico , Domínios Proteicos , Timina/análogos & derivados , Timina/química , Timina/metabolismoRESUMO
Certain loss-of-function mutations in the gene encoding the lysine catabolic enzyme aldehyde dehydrogenase 7A1 (ALDH7A1) cause pyridoxine-dependent epilepsy (PDE). Missense mutations of Glu427, especially Glu427Gln, account for ~30% of the mutated alleles in PDE patients, and thus Glu427 has been referred to as a mutation hot spot of PDE. Glu427 is invariant in the ALDH superfamily and forms ionic hydrogen bonds with the nicotinamide ribose of the NAD+ cofactor. Here we report the first crystal structures of ALDH7A1 containing pathogenic mutations targeting Glu427. The mutant enzymes E427Q, Glu427Asp, and Glu427Gly were expressed in Escherichia coli and purified. The recombinant enzymes displayed negligible catalytic activity compared to the wild-type enzyme. The crystal structures of the mutant enzymes complexed with NAD+ were determined to understand how the mutations impact NAD+ binding. In the E427Q and E427G structures, the nicotinamide mononucleotide is highly flexible and lacks a defined binding pose. In E427D, the bound NAD+ adopts a "retracted" conformation in which the nicotinamide ring is too far from the catalytic Cys residue for hydride transfer. Thus, the structures revealed a shared mechanism for loss of function: none of the variants are able to stabilise the nicotinamide of NAD+ in the pose required for catalysis. We also show that these mutations reduce the amount of active tetrameric ALDH7A1 at the concentration of NAD+ tested. Altogether, our results provide the three-dimensional molecular structural basis of the most common pathogenic variants of PDE and implicate strong (ionic) hydrogen bonds in the aetiology of a human disease.