RESUMO
BACKGROUND: Lacticaseibacillus (formerly Lactobacillus) rhamnosus is widely used in probiotics or food supplements to promote microbiome health and may also be part of the normal microbiota of the human gastrointestinal tract. However, it rarely also causes invasive or severe infections in patients. It has been postulated that these infections may originate from probiotics or from endogenous commensal reservoirs. In this report, we examine the population structure of Lacticaseibacillus rhamnosus and investigate the utility of using bacterial genomics to identify the source of invasive Lacticaseibacillus infections. METHODS: Core genome phylogenetic analysis was performed on 602 L. rhamnosus genome sequences from the National Center for Biotechnology public database. This information was then used along with newly generated sequences of L. rhamnosus isolates from yogurt to investigate a fatal case of L. rhamnosus endocarditis. RESULTS: Phylogenetic analysis demonstrated substantial genetic overlap of L. rhamnosus isolates cultured from food, probiotics, infected patients, and colonized individuals. This was applied to a patient who had both consumed yogurt and developed L. rhamnosus endocarditis to attempt to identify the source of his infection. The sequence of the isolate from the patient's bloodstream differed at only one nucleotide position from one of the yogurt isolates. Both isolates belonged to a clade, identified here as clade YC, composed of mostly gastrointestinal isolates from healthy individuals, some of which also differed by only a single nucleotide change from the patient's isolate. CONCLUSIONS: As illustrated by this case, whole genome sequencing may be insufficient to reliably determine the source of invasive infections caused by L. rhamnosus.
Assuntos
Genoma Bacteriano , Lacticaseibacillus rhamnosus , Filogenia , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/isolamento & purificação , Humanos , Probióticos , Masculino , Endocardite Bacteriana/microbiologia , Iogurte/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/diagnóstico , Endocardite/microbiologiaRESUMO
In an attempt to identify novel bacterial species, microbiologists have examined a wide range of environmental niches. We describe the serendipitous discovery of a novel gram-negative bacterial species from a different type of extreme niche: a purchased vial of antibiotic. The vial of antibiotic hygromycin B was found to be factory contaminated with a bacterial species, which we designate Pseudomonas hygromyciniae sp. nov. The proposed novel species belongs to the P. fluorescens complex and is most closely related to P. brenneri, P. proteolytica, and P. fluorescens. The type strain Pseudomonas hygromyciniae sp. nov. strain SDM007T (SDM007T) harbors a novel 250 kb megaplasmid which confers resistance to hygromycin B and contains numerous other genes predicted to encode replication and conjugation machinery. SDM007T grows in hygromycin concentrations of up to 5 mg/mL but does not use the antibiotic as a carbon or nitrogen source. While unable to grow at 37°C ruling out its ability to infect humans, it grows and survives at temperatures between 4 and 30°C. SDM007T can infect plants, as demonstrated by the lettuce leaf model, and is highly virulent in the Galleria mellonella infection model but is unable to infect mammalian A549 cells. These findings indicate that commercially manufactured antibiotics represent another extreme environment that may support the growth of novel bacterial species. IMPORTANCE Physical and biological stresses in extreme environments may select for bacteria not found in conventional environments providing researchers with the opportunity to not only discover novel species but to uncover new enzymes, biomolecules, and biochemical pathways. This strategy has been successful in harsh niches such as hot springs, deep ocean trenches, and hypersaline brine pools. Bacteria belonging to the Pseudomonas species are often found to survive in these unusual environments, making them relevant to healthcare, food, and manufacturing industries. Their ability to survive in a variety of environments is mainly due to the high genotypic and phenotypic diversity displayed by this genus. In this study, we discovered a novel Pseudomonas sp. from a desiccated environment of a sealed antibiotic bottle that was considered sterile. A close genetic relationship with its phylogenetic neighbors reiterated the need to use not just DNA-based tools but also biochemical characteristics to accurately classify this organism.
RESUMO
Resistance to antipseudomonal penicillins and cephalosporins is often driven by the overproduction of the intrinsic ß-lactamase AmpC. However, OXA-10-family ß-lactamases are a rich source of resistance in Pseudomonas aeruginosa. OXA ß-lactamases have a propensity for mutation that leads to extended spectrum cephalosporinase and carbapenemase activity. In this study, we identified isolates from a subclade of the multidrug-resistant (MDR) high risk P. aeruginosa clonal complex CC446 with a resistance to ceftazidime. A genomic analysis revealed that these isolates harbored a plasmid containing a novel allele of blaOXA-10, named blaOXA-935, which was predicted to produce an OXA-10 variant with two amino acid substitutions: an aspartic acid instead of a glycine at position 157 and a serine instead of a phenylalanine at position 153. The G157D mutation, present in OXA-14, is associated with the resistance of P. aeruginosa to ceftazidime. Compared to OXA-14, OXA-935 showed increased catalytic efficiency for ceftazidime. The deletion of blaOXA-935 restored the sensitivity to ceftazidime, and susceptibility profiling of P. aeruginosa laboratory strains expressing blaOXA-935 revealed that OXA-935 conferred ceftazidime resistance. To better understand the impacts of the variant amino acids, we determined the crystal structures of OXA-14 and OXA-935. Compared to OXA-14, the F153S mutation in OXA-935 conferred increased flexibility in the omega (Ω) loop. Amino acid changes that confer extended spectrum cephalosporinase activity to OXA-10-family ß-lactamases are concerning, given the rising reliance on novel ß-lactam/ß-lactamase inhibitor combinations, such as ceftolozane-tazobactam and ceftazidime-avibactam, to treat MDR P. aeruginosa infections.
Assuntos
Ceftazidima , Infecções por Pseudomonas , Humanos , Ceftazidima/farmacologia , Pseudomonas aeruginosa , Inibidores de beta-Lactamases/farmacologia , Cefalosporinase/genética , Ácido Aspártico , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Tazobactam/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Cefalosporinas/farmacologia , Compostos Azabicíclicos/farmacologia , Serina , Fenilalanina , Glicina , Infecções por Pseudomonas/tratamento farmacológicoRESUMO
Infections with multidrug resistant (MDR) Enterococcus faecium (Efm) are a growing problem. Vancomycin resistance in enterococci has long challenged treatment, necessitating the use of linezolid or daptomycin. Subsequently, daptomycin-, linezolid-, vancomycin-resistant Efm (DLVRE) infections have emerged. Case reports and guidelines for treating DLVRE infections are limited. Here, we describe the clinical and laboratory management of an MDR Efm protracted intraabdominal (IA) infection and breakthrough DLVRE bacteremia. Serial Efm resistance was evaluated using whole genome sequencing (WGS), susceptibility testing, and synergy analysis. Prior to in vitro synergy testing, combination antimicrobial therapy with daptomycin (DAP) and ceftaroline (CPT) was employed to treat the patient's central line-associated DLVRE bloodstream infection. In vitro antimicrobial testing revealed no synergy between daptomycin and ceftaroline; however, the patient's bacteremia cleared following initiation of both in conjunction with catheter removal. Sequencing of the DLVRE isolates revealed multiple genomic mutations which explained both linezolid and daptomycin resistance phenotypes and confirmed the presence of a plasmid containing the vanA operon. Sequential WGS of two additional bacterial isolates from the same patient revealed protracted colonization with a single DLVRE clone and suggested the development of bacterial subpopulations. Pairing clinical isolate susceptibilities with WGS and synergy testing should be encouraged in clinical practice to better inform antimicrobial management in cases of multidrug resistance.
RESUMO
BACKGROUND: Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood. METHODS: We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database. RESULTS: Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1). CONCLUSIONS: Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates).