Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(29): eado9024, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028817

RESUMO

Fault-tolerant operations based on stabilizer codes are the state of the art in suppressing error rates in quantum computations. Most such codes do not permit a straightforward implementation of non-Clifford logical operations, which are necessary to define a universal gate set. As a result, implementations of these operations must use either error-correcting codes with more complicated error correction procedures or gate teleportation and magic states, which are prepared at the logical level, increasing overhead to a degree that precludes near-term implementation. Here, we implement a small quantum algorithm, one-qubit addition, fault-tolerantly on a trapped-ion quantum computer, using the [Formula: see text] color code. By removing unnecessary error correction circuits and using low-overhead techniques for fault-tolerant preparation and measurement, we reduce the number of error-prone two-qubit gates and measurements to 36. We observe arithmetic errors with a rate of ∼1.1 × 10-3 for the fault-tolerant circuit and ∼9.5 × 10-3 for the unencoded circuit.

2.
Sci Adv ; 10(22): eadm6761, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809986

RESUMO

The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA