Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biotechnol ; 248: 48-58, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28300660

RESUMO

Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems.


Assuntos
Anticorpos , Cisteína , Engenharia de Proteínas/métodos , Proteínas Recombinantes , Animais , Anticorpos/química , Anticorpos/isolamento & purificação , Anticorpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Cisteína/química , Cisteína/metabolismo , Dinitrobenzenos , Células HEK293 , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
2.
Antibodies (Basel) ; 5(1)2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-31557987

RESUMO

Bispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART®) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format. The crystal structure of this disulfide-constrained diabody shows that it forms a novel compact structure with the two antigen binding sites separated from each other by approximately 30 Å and facing approximately 90° apart. We show here that introduction of the human Fc domain in PF-06671008 has produced a molecule with an extended half-life (-4.4 days in human FcRn knock-in mice), high stability (Tm1 > 68 °C), high expression (>1 g/L), and robust purification properties (highly pure heterodimer), all with minimal impact on potency. Finally, we demonstrate in vivo anti-tumor efficacy in a human colorectal/human peripheral blood mononuclear cell (PBMC) co-mix xenograft mouse model. These results suggest PF-06671008 is a promising new bispecific for the treatment of patients with solid tumors expressing P-cadherin.

3.
Int Immunopharmacol ; 28(1): 354-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26130567

RESUMO

Staphylococcus aureus is a common nosocomial infection and its resistance to penicillin and methicillin antibiotics is a growing clinical problem. We previously described the development of a humanized anti-Staphylococcus enterotoxin B (SEB) antibody derived from the mouse antibody made by the 20B1 hybridoma. This antibody was humanized and characterized kinetically by surface plasmon resonance demonstrating that the humanized clones retained binding to SEB. Clones were then functionally characterized in an in vitro assay demonstrating that the murine 20B1, chimeric and humanized antibodies potently inhibited SEB-induced murine splenocyte proliferation assay. Here, we describe a human cell-based screening assay, optimized by varying multiple experimental parameters that resulted in an assay that was used to demonstrate full and potent neutralization by the parental, chimeric and humanized antibodies. The replacement of fetal bovine serum (FBS) with normal human serum (NHS) was found to be a crucial factor in the performance of the human cell based screening assay that enabled the calculation of mAb efficacy and potency. In addition, we found that anti-SEB antibodies showed similar efficacy and potency with a triple mutant Fc region (designed to be effector function null) or a wild-type Fc region, which is in contrast to previously described studies.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Enterotoxinas/imunologia , Animais , Bioensaio , Proliferação de Células , Células Cultivadas , Humanos , Leucócitos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de IgG/imunologia , Soro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA