Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochemistry ; 62(14): 2216-2227, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37410993

RESUMO

Polymyxins are important last resort antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. However, pathogens have acquired resistance to polymyxins through a pathway that modifies lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N). Inhibition of this pathway is, therefore, a desirable strategy to combat polymyxin resistance. The first pathway-specific reaction is an NAD+-dependent oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcA) catalyzed by the dehydrogenase domain of ArnA (ArnA_DH). We present the crystal structure of Salmonella enterica serovar typhimurium ArnA in complex with UDP-GlcA showing that binding of the sugar nucleotide is sufficient to trigger a conformational change conserved in bacterial ArnA_DHs but absent in its human homologs, as confirmed by structure and sequence analysis. Ligand binding assays show that the conformational change is essential for NAD+ binding and catalysis. Enzyme activity and binding assays show that (i) UDP-GlcA analogs lacking the 6' carboxylic acid bind the enzyme but fail to trigger the conformational change, resulting in poor inhibition, and (ii) the uridine monophosphate moiety of the substrate provides most of the ligand binding energy. Mutation of asparagine 492 to alanine (N492A) disrupts the ability of ArnA_DH to undergo the conformational change while retaining substrate binding, suggesting that N492 is involved in sensing the 6' carboxylate in the substrate. These results identify the UDP-GlcA-induced conformational change in ArnA_DH as an essential mechanistic step in bacterial enzymes, providing a platform for selective inhibition.


Assuntos
NAD , Polimixinas , Humanos , Polimixinas/farmacologia , Polimixinas/química , Ligantes , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo , Oxirredutases
2.
Structure ; 25(1): 94-106, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27989620

RESUMO

The ß-barrel assembly machine (BAM) mediates the biogenesis of outer membrane proteins (OMPs) in Gram-negative bacteria. BamA, the central BAM subunit composed of a transmembrane ß-barrel domain linked to five polypeptide transport-associated (POTRA) periplasmic domains, is thought to bind nascent OMPs and undergo conformational cycling to catalyze OMP folding and insertion. One model is that conformational flexibility between POTRA domains is part of this conformational cycling. Nuclear magnetic resonance (NMR) spectroscopy was used here to study the flexibility of the POTRA domains 1-5 in solution. NMR relaxation studies defined effective rotational correlational times and together with residual dipolar coupling data showed that POTRA1-2 is flexibly linked to POTRA3-5. Mutants of BamA that restrict flexibility between POTRA2 and POTRA3 by disulfide crosslinking displayed impaired function in vivo. Together these data strongly support a model in which conformational cycling of hinge motions between POTRA2 and POTRA3 in BamA is required for biological function.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Periplasma , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína
3.
Structure ; 16(12): 1873-81, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19081063

RESUMO

The envelope of Gram-negative bacteria consists of inner and outer membranes surrounding the peptidoglycan wall. The outer membrane (OM) is rich in integral membrane proteins (OMPs), which have a characteristic beta barrel domain embedded in the OM. The Omp85 family of proteins, ubiquitous among Gram-negative bacteria and also present in chloroplasts and mitochondria, is required for folding and insertion of OMPs into the outer membrane. Bacterial Omp85 proteins are characterized by a periplasmic domain containing five repeats of polypeptide transport-associated (POTRA) motifs. Here we report the crystal structure of a periplasmic fragment of YaeT (the Escherichia coli Omp85) containing the first four POTRA domains in an extended conformation consistent with recent solution X-ray scattering data. Analysis of the YaeT structure reveals conformational flexibility around a hinge point between POTRA2 and 3 domains. The structure's implications for substrate binding and folding mechanisms are also discussed.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Conformação Proteica , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalização , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Periplasma/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
4.
Structure ; 13(6): 929-42, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15939024

RESUMO

The modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. ArnA is the first enzyme specific to the lipid A-Ara4N pathway. It contains two functionally and physically separable domains: a dehydrogenase domain (ArnA_DH) catalyzing the NAD+-dependent oxidative decarboxylation of UDP-Glucuronic acid (UDP-GlcA), and a transformylase domain that formylates UDP-Ara4N. Here, we describe the crystal structure of the full-length bifunctional ArnA with UDP-GlcA and ATP bound to the dehydrogenase domain. Binding of UDP-GlcA triggers a 17 A conformational change in ArnA_DH that opens the NAD+ binding site while trapping UDP-GlcA. We propose an ordered mechanism of substrate binding and product release. Mutation of residues R619 and S433 demonstrates their importance in catalysis and suggests that R619 functions as a general acid in catalysis. The proposed mechanism for ArnA_DH has important implications for the design of selective inhibitors.


Assuntos
Amino Açúcares/química , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Polimixinas/farmacologia , Uridina Difosfato Glucose Desidrogenase/química , Trifosfato de Adenosina/metabolismo , Amino Açúcares/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Hidroximetil e Formil Transferases/química , Hidroximetil e Formil Transferases/metabolismo , Ligantes , Modelos Moleculares , Conformação Molecular , Mutação , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise Espectral Raman , Especificidade por Substrato , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo
5.
Biochemistry ; 44(14): 5328-38, 2005 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15807526

RESUMO

Gram-negative bacteria have evolved mechanisms to resist the bactericidal action of cationic antimicrobial peptides of the innate immune system and antibiotics such as polymyxin. The strategy involves the addition of the positively charged sugar 4-amino-4-deoxy-l-arabinose (Ara4N) to lipid A in their outer membrane. ArnA is a key enzyme in the Ara4N-lipid A modification pathway. It is a bifunctional enzyme catalyzing (1) the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcA) to the UDP-4' '-ketopentose [UDP-beta-(l-threo-pentapyranosyl-4' '-ulose] and (2) the N-10-formyltetrahydrofolate-dependent formylation of UDP-Ara4N. Here we demonstrate that the transformylase activity of the Escherichia coli ArnA is contained in its 300 N-terminal residues. We designate it the ArnA transformylase domain and describe its crystal structure solved to 1.7 A resolution. The enzyme adopts a bilobal structure with an N-terminal Rossmann fold domain containing the N-10-formyltetrahydrofolate binding site and a C-terminal subdomain resembling an OB fold. Sequence and structure conservation around the active site of ArnA transformylase and other N-10-formyltetrahydrofolate-utilizing enzymes suggests that the HxSLLPxxxG motif can be used to identify enzymes that belong to this family. Binding of an N-10-formyltetrahydrofolate analogue was modeled into the structure of ArnA based on its similarity with glycinamide ribonucleotide formyltransferase. We also propose a mechanism for the transformylation reaction catalyzed by ArnA involving residues N(102), H(104), and D(140). Supporting this hypothesis, point mutation of any of these residues abolishes activity.


Assuntos
Amino Açúcares/farmacologia , Carboxiliases/química , Resistência Microbiana a Medicamentos , Escherichia coli/enzimologia , Lipídeo A/química , Polimixinas/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Carboxiliases/genética , Carboxiliases/metabolismo , Cristalografia por Raios X , Primers do DNA , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
6.
Biochemistry ; 43(42): 13370-9, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15491143

RESUMO

Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa can modify the structure of lipid A in their outer membrane with 4-amino-4-deoxy-l-arabinose (Ara4N). Such modification results in resistance to cationic antimicrobial peptides of the innate immune system and antibiotics such as polymyxin. ArnA is a key enzyme in the lipid A modification pathway, and its deletion abolishes both the Ara4N-lipid A modification and polymyxin resistance. ArnA is a bifunctional enzyme. It can catalyze (i) the NAD(+)-dependent decarboxylation of UDP-glucuronic acid to UDP-4-keto-arabinose and (ii) the N-10-formyltetrahydrofolate-dependent formylation of UDP-4-amino-4-deoxy-l-arabinose. We show that the NAD(+)-dependent decarboxylating activity is contained in the 360 amino acid C-terminal domain of ArnA. This domain is separable from the N-terminal fragment, and its activity is identical to that of the full-length enzyme. The crystal structure of the ArnA decarboxylase domain from E. coli is presented here. The structure confirms that the enzyme belongs to the short-chain dehydrogenase/reductase (SDR) family. On the basis of sequence and structure comparisons of the ArnA decarboxylase domain with other members of the short-chain dehydrogenase/reductase (SDR) family, we propose a binding model for NAD(+) and UDP-glucuronic acid and the involvement of residues T(432), Y(463), K(467), R(619), and S(433) in the mechanism of NAD(+)-dependent oxidation of the 4''-OH of the UDP-glucuronic acid and decarboxylation of the UDP-4-keto-glucuronic acid intermediate.


Assuntos
Amino Açúcares/química , Carboxiliases/química , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/química , Lipídeo A/metabolismo , Polimixinas/química , Sequência de Aminoácidos , Sítios de Ligação , Carboxiliases/metabolismo , Cristalização , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Hidroximetil e Formil Transferases/química , Lipídeo A/química , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato , UDPglucose 4-Epimerase/química , UDPglucose 4-Epimerase/metabolismo , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA