Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802008

RESUMO

The finite pore volume Guggenheim-Anderson-de Boer (fpv-GAB) adsorption isotherm model has been considered as a simple tool which not only enables us to analyze the shape of isotherms theoretically, but also provides information about pore diameter. The proposed methodology is based on the geometrical considerations and the division of the adsorption space into two parts: the monolayer and the multilayer space. The ratio of the volumes of these two spaces is unambiguously related to the pore diameter. This ratio can be simply determined from the N2 adsorption isotherm by its fitting with the use of fpv-GAB model. The volume ratio is equal to the ratio of the adsorption capacities in the monolayer and the multilayer-two of the best-fit parameters. The suggested approach has been verified using a series of isotherms simulated inside ideal carbon nanotubes. The adsorption data for some real adsorbents has also been used during tests. The studies performed have proven that diameters estimated with the use of the proposed method are comparable with the geometrical sizes or diameters published by others and based on the application of more sophisticated methods. For pores wider than 3 nm, the relative error does not exceed a few percent. The approach based on the fpv-GAB model reflects well the differences in pore sizes for the series of materials. Therefore, it can be treated as a convenient tool to compare various samples.

2.
Materials (Basel) ; 12(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618831

RESUMO

This paper shows the first study of the synthesis of hybrid materials consisting of commercial Norit carbons and oligothiophenes. The study presents the influence of surface oxidation on dye deposition as well as changes of pore structure and surface chemistry. The hybrid materials were characterised using Raman spectroscopy, and scanning and transmission electron microscopy (SEM and HR-TEM, respectively). Confocal microscopy was employed to confirm the immobilization of oligomers on the surface of the carbons being investigated. Confocal microscopy measurements were additionally used to indicate whether dye molecules covered the entire surface of the selected commercial Norit samples. Specific surface area and pore structure parameters were determined by low-temperature nitrogen adsorption. Additionally, elemental content and surface chemistry were characterised by means of X-ray photoelectron spectroscopy (XPS) and combustion elemental analysis. Experimental results confirmed that oligothiophene dyes were adsorbed onto the internal part of the investigated pores of the carbon materials. The pores were assumed to have a slit-like shape, a set of 82 local adsorption isotherms was modelled for pores from 0.465 nm to 224 nm. Further, XPS data showed promising qualitative results regarding the surface characteristics and chemical composition of the hybrid materials obtained (sulphur content ranged from 1.40 to 1.45 at%). It was shown that the surface chemistry of activated carbon plays a key role in the dye deposition process. High surface heterogeneity after hydrothermal oxidation did not improve dye adsorption due to specific interactions between surface oxygen moieties and local electric charges in the oligothiophene molecules.

3.
J Phys Condens Matter ; 31(13): 135001, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30654355

RESUMO

In the current work we have used reactive Monte Carlo simulations to systematically study the effects of graphene folding on equilibria of NO dimerisation occurring at isolated surfaces and in porous networks built of corrugated graphene sheets. It has been demonstrated that the folding of isolated graphene sheets significantly improves the yield of reactions occurring on their surface. Then, it has also been shown that in slit-like pores formed by the folded graphene sheets the reaction yield depends on the corrugation and arrangement of the pore walls. It has been found that the reaction yield increases when the walls' corrugation is high because of the appearance of narrow regions and/or wedge-like regions in the pores. The condensation of reacting fluid in such places, where the bulges at both walls are close one to another, leads to much higher reaction yield than on the surface of isolated sheets. Thus, we recommended the highly corrugated graphene to control the chemical reactions.

4.
Sci Rep ; 8(1): 15407, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337706

RESUMO

Carbon nanohorns (CNHs, one of the newest carbon allotropes) have been subjected to intensive experimental and theoretical studies due to their potential applications. One of such applications can be their use as reaction nanochambers. However, experimental studies on the reaction equilibria under confinement are extremely challenging since accurate measurements of the concentrations of reacting species in pores are a very hard task. So, the main ways to examine such phenomena are theoretical methods (e.g. the reactive Monte Carlo, RxMC). We have presented the first systematic RxMC study on the influence of the CNH's geometric parameters (the apex angle, the diameter, and the length) on reaction equilibria, taking the nitrogen monoxide dimerisation as an example. All the investigated parameters significantly affect the reaction yield at low and moderate coverages. Short and narrow CNHs have been found to be preferred. However, the key factor influencing the reaction equilibria is the presence of a conical part. Energetics of interactions between the reacting molecules in this fragment of a nanohorn maximises the effects of confinement. In consequence, CNHs have the advantage over their nanotube counterparts of the same diameter. The obtained results have confirmed that CNHs can be considered as potential reaction nanochambers.

5.
J Phys Condens Matter ; 28(49): 495002, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27736807

RESUMO

The major subject of our study is the accuracy of contact angle calculations. Reporting new simulation data for graphene-water systems, we show that the majority of previously reported data should be treated with caution, since the proper contact angle can be recorded only after a sufficiently long simulation time. It has been proven that-if one wants to gain accuracy greater than 0.1°-long calculations (exceeding 50 ns) are required. Finally, we also show, using both a Groningen Machine for Chemical Simulations (GROMACS) package and our new molecular dynamics (MD) code, that the changes in the contact angle, caused by graphene bottom layer rotation, are within the range of calculation error. We also propose a novel definition of the bottom of the droplet as the height where the density is half the density of liquid water. This new definition is applied in the method of the contact angle calculation from the MD simulation data.

6.
J Nanosci Nanotechnol ; 16(3): 2623-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455679

RESUMO

A series of porous carbon matrixes was prepared by phosphoric (V) acid activation of unconventional precursors chitin and chitosan: impregnation with H3PO4 at concentrations ranging from 1.34 to 5.53 mole dm(-3), followed by carbonization at 600 degrees C. The obtained carbons demonstrated well-developed porosity that declined steadily in the micropore and mesosopore ranges, depending on both the kind of the precursor and the concentration of activator. The surface area and pore volume of the carbons prepared from chitin increased upon the rising impregnation ratio. The surface area and total pore volume reached their maximum values (1257 m2g(-1) and 1.007 cm3g(-1), respectively) for the acid concentration of 3.40 mole dm(-3). The chars obtained from chitosan showed the values of the BET surface area ranging from 970 to 1484 m2g(-1). Chemical analysis indicated that the activation with phosphoric acid led to the chars of exceptionally high concentration of nitrogenated functionalities and a typical amount of oxygenated surface groups.


Assuntos
Carbono/química , Quitina/química , Quitosana/química , Nanoestruturas , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Porosidade , Espectrometria por Raios X
7.
J Phys Condens Matter ; 28(1): 015002, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26569632

RESUMO

We have performed systematic Monte Carlo studies on the influence of shifting the walls in slit-like systems constructed from folded graphene sheets on their adsorption properties. Specifically, we have analysed the effect on the mechanism of argon adsorption (T = 87 K) and on adsorption and separation of three binary gas mixtures: CO2/N2, CO2/CH4 and CH4/N2 (T = 298 K). The effects of the changes in interlayer distance were also determined. We show that folding of the walls significantly improves the adsorption and separation properties in comparison to ideal slit-like systems. Moreover, we demonstrate that mutual shift of sheets (for small interlayer distances) causes the appearance of small pores between opposite bulges. This causes an increase in vapour adsorption at low pressures. Due to overlapping of interactions with opposite walls causing an increase in adsorption energy, the mutual shift of sheets is also connected with the rise in efficiency of mixture separation. The effects connected with sheet orientation vanish as the interlayer distance increases.

8.
J Phys Chem Lett ; 6(17): 3367-72, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26270239

RESUMO

Although recent experimental studies have demonstrated that H2 and D2 molecules wet the inner surface of supergrowth carbon nanotubes at low temperatures, characterization of the structural and dynamical properties in this regime is challenging. This Letter presents a theoretical study of self-diffusion in pure and binary H2, D2, and T2 contact monolayer films formed on the inner surface of a carbon nanotube. Our results show that monolayer formation and self-diffusion both in pure hydrogen isotopes and in H2/T2 and H2/D2 isotope mixtures is impacted by nuclear quantum effects, suggesting potential applications of carbon nanotubes for the separation of hydrogen isotopes.

9.
Phys Chem Chem Phys ; 17(11): 7232-47, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25689966

RESUMO

The GCMC technique is used for simulation of adsorption of CO2-CH4, CO2-N2 and CH4-N2 mixtures (at 298 K) on six porous carbon models. Next we formulate a new condition of the IAS concept application, showing that our simulated data obey this condition. Calculated deviations between IAS predictions and simulation results increase with the rise in pressure as in the real experiment. For the weakly adsorbed mixture component the deviation from IAS predictions is higher, especially when its content in the gas mixture is low, and this is in agreement with the experimental data. Calculated activity coefficients have similar plots to deviations between IAS and simulations, moreover obtained from simulated data activity coefficients are similar qualitatively as well as quantitatively to experimental data. Since the physical interpretation of activity coefficients is completely lacking we show for the first time that they can be described by the formulas derived from the expression for G(ex) for the ternary mixture. Finally we also for the first time show the linear relationship between the chemical potentials of nonideal and ideal solutions and the reduced temperature of interacting mixture components, and it is proved that the deviation from ideality is larger if adsorption occurs in a more microporous system.

10.
J Phys Condens Matter ; 26(48): 485006, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25352074

RESUMO

We report for the first time a detailed procedure for creating a simulation model of energetically stable, folded graphene-like pores and simulation results of CO2/CH4 and CO2/N2 separation using these structures. We show that folding of graphene structures is a very promising method to improve the separation of CO2 from mixtures with CH4 and N2. The separation properties of the analysed materials are compared with carbon nanotubes having similar diameters or S/V ratio. The presented results have potential importance in the field of CO2 capture and sequestration.

11.
Phys Chem Chem Phys ; 16(23): 11763-9, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24817487

RESUMO

We present the first in silico modeling of the Pd-H-single-walled carbon nanohorn nanocomposites. Temperature-quench Monte Carlo simulations are used to generate the most stable morphologies of Pd81 clusters (cluster sizes of ∼2 nm) deposited inside the morphologically defective single-walled carbon nanohorns (S. Furmaniak, A. P. Terzyk, K. Kaneko, P. A. Gauden, P. Kowalczyk, T. Itoh, Phys. Chem. Chem. Phys., 2013, 15, 1232-1240). The optimized Pd81-single-walled carbon nanohorn nanocomposites are next used in calculating the H binding energy distributions at 300 K. The most stable positions of H impurity in confined Pd81 clusters are identified, showing subsurface character of H absorption from the dilute H2 gas at 300 K. The H binding energy distribution on the Pd(100) open surface at 300 K is computed and compared with those corresponding to Pd81-single-walled carbon nanohorn nanocomposites. Finally, the impact of the Pd-H short-range order on the H binding energy is explored and critically discussed.

12.
J Phys Condens Matter ; 26(5): 055008, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24356213

RESUMO

The results of systematic studies of organics adsorption from aqueous solutions (at the neutral pH level) in a system of slit-like carbon pores having different sizes and oxygen groups located at the pore mouth are reported. Using molecular dynamics simulations (GROMACS package) the properties of adsorbent-adsorbate (benzene, phenol or paracetamol) as well as adsorbent-water systems are discussed. After the introduction of surface oxygen functionalities, adsorption of organic compounds decreases (in accordance with experimental data) and this is caused by the accumulation of water molecules at pore entrances. The pore blocking effect decreases with the diameter of slits and practically vanishes for widths larger than approx. 0.68 nm. We observed the increase in phenol adsorption with the rise in temperature. Moreover, adsorbed molecules occupy the external surface of the slit pores (the entrances) in the case of oxidized adsorbents. Among the studied molecules benzene, phenol and paracetamol prefer an almost flat orientation and with the rise in the pore width the number of molecules oriented in parallel decreases. The decrease or increase in temperature (with respect to 298 K) leads to insignificant changes of angular orientation of adsorbed molecules.

13.
Phys Chem Chem Phys ; 15(40): 17366-73, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24022382

RESUMO

Applying pore size analysis, Monte Carlo simulations, and transition state theory, we study the molecular sieving properties of recently discovered crystalline exotic cubic carbon allotropes (Hu et al., J. Phys. Chem. C, 2012, 116, 24233-24238) at 298 K and infinite dilution. The fcc-C10 cubic carbon crystal shows unusual molecular sieving characteristics. The carbon cavities of the fcc-C10 cubic carbon polymorph (with an effective size of ~3.5-4 Å) are kinetically closed to common gaseous contaminants of He fluid (including: Ne, Ar, H2, and CO). Because the sizes of nanowindows connecting carbon cavities are comparable with the effective size of a He atom (~2.556 Å), we predict a significant resistance to self-diffusion of the He in the fcc-C10 crystal. Computed self-diffusion coefficients ~1.3 × 10(-6)-1.3 × 10(-7) cm(2) s(-1) for He inside fcc-C10 fall in the range characteristic of molecular diffusion in zeolites. Infrequent "jumps" of He atoms between neighboring carbon cavities and kinetic rejection of other gaseous particles indicate potential application of the fcc-C10 carbon polymorph for kinetic molecular sieving of He near ambient temperatures. The theoretical results presented here are useful for correct interpretation of the pore volumes of carbon molecular sieves measured from helium porosimetry.

14.
Phys Chem Chem Phys ; 15(39): 16468-76, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24002701

RESUMO

Using realistic models of single-walled carbon nanohorns and their single-walled carbon nanotube counterparts, we study the equilibrium separation of CO2-CH4 mixtures near ambient operating conditions by using molecular simulations. We show that regardless of the studied operating conditions (i.e., total CO2-CH4 mixture pressures and mole fractions of mixture components in the bulk phase), single-walled carbon nanohorns maximize the CO2-CH4 equilibrium separation factor. Optimized samples of single-walled carbon nanohorns consisting of narrow tubular parts capped with horn-shaped tips show highly selective adsorption of CO2 over the CH4 mixture component, with the CO2-CH4 equilibrium separation factor of ~8-12. A large surface-to-volume ratio (i.e., enhanced surface forces) and unique defective morphology (i.e., packing of adsorbed molecules in quasi-one/quasi-zero dimensional nanospaces) of single-walled carbon nanohorns are their key structural properties responsible for the excellent separation performance. Our theoretical simulation results are in quantitative agreement with a recent experimental/theoretical study of the CO2-CH4 adsorption and separation on oxidized single-walled carbon nanohorns [Ohba et al., Chem. Lett., 40, 2011, 1089]. Both experiment and theory showed that the CO2-CH4 equilibrium separation factor of oxidized samples of single-walled nanohorns measured near ambient operating conditions is ~2-5. This reduction in the separation efficiency as compared to optimized samples of single-walled carbon nanohorns is theoretically justified by their lower surface-to-volume ratio (i.e., larger diameters of tubular parts and horn-shaped tips).


Assuntos
Dióxido de Carbono/química , Técnicas de Química Analítica/métodos , Metano/química , Nanotubos de Carbono/química , Simulação por Computador , Propriedades de Superfície
15.
J Phys Condens Matter ; 25(35): 355002, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23860420

RESUMO

The application of commercially available carbon materials (nanotubes and porous carbons) for the preparation of drug delivery systems is studied. We used two types of carbon nanotubes (CNT) and two activated carbons as potential materials in so-called hot-melt drug deposition (HMDD). The materials were first studied using Raman spectroscopy. Paracetamol was chosen as a model drug. The performed thermal analysis, kinetics, and adsorption-desorption studies revealed that nanoaggregates are formed between carbon nanotubes. In contrast, in pores of activated carbon we do not observe this process and the drug adsorption phenomenon mechanism is simply the filling of small pores. The formation of nanoaggregates was confirmed by the results of GCMC (grand canonical Monte Carlo) simulations and the study of the surface area on nitrogen adsorption-desorption isotherms. The application of carbon nanotubes in HMDD offers the possibility of controlling the rate of drug delivery. Performed MTT tests of nanotubes and drug-loaded nanotubes show that the observed decrease in cell viability number is caused by the influence of the cytostatic properties of nanotubes-they inhibit the proliferation of cells. The carbon nanotubes studied in this paper are essentially nontoxic.


Assuntos
Acetaminofen/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Carvão Vegetal/química , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Absorção , Acetaminofen/química , Animais , Células CHO , Cricetinae , Cricetulus , Difusão , Teste de Materiais , Nanocápsulas/administração & dosagem , Tamanho da Partícula , Porosidade
16.
J Colloid Interface Sci ; 397: 144-53, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23433521

RESUMO

We have studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry (the number of carbonyl groups) on CO2 capture from its mixtures with CH4 at typical operating conditions for industrial adsorptive separation (298 K and compressed CO2-CH4 mixtures). Although both confinement and surface oxidation have an impact on the efficiency of CO2/CH4 adsorptive separation at thermodynamics equilibrium, we show that surface functionalization is the most important factor in designing an efficient adsorbent for CO2 capture. Systematic Monte Carlo simulations revealed that adsorption of CH4 either pure or mixed with CO2 on oxidized nanoporous carbons is only slightly increased by the presence of functional groups (surface dipoles). In contrast, adsorption of CO2 is very sensitive to the number of carbonyl groups, which can be examined by a strong electric quadrupolar moment of CO2. Interestingly, the adsorbed amount of CH4 is strongly affected by the presence of the co-adsorbed CO2. In contrast, the CO2 uptake does not depend on the molar ratio of CH4 in the bulk mixture. The optimal carbonaceous porous adsorbent used for CO2 capture near ambient conditions should consist of narrow carbon nanopores with oxidized pore walls. Furthermore, the equilibrium separation factor was the greatest for CO2/CH4 mixtures with a low CO2 concentration. The maximum equilibrium separation factor of CO2 over CH4 of ~18-20 is theoretically predicted for strongly oxidized nanoporous carbons. Our findings call for a review of the standard uncharged model of carbonaceous materials used for the modeling of the adsorption separation processes of gas mixtures containing CO2 (and other molecules with strong electric quadrupolar moment or dipole moment).

17.
J Chem Theory Comput ; 9(7): 2922-9, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26583975

RESUMO

We present the implementation of a real-space constant pressure path integral Gibbs ensemble Monte Carlo (CP-PIGEMC) method for the simulation of one-component fluid consists of distinguishable quantum particles (henceforth referred to as Boltzmannons) in an external potential field at finite temperatures. We apply this simulation method to study the para-H2 adsorption in NaX zeolite at 77 K and pressures up to 100 bar. We present a new set of effective solid-fluid parameters optimized for path integral simulations of hydrogen isotope adsorption and separation in synthetic zeolites. The agreement among CP-PIGEMC, experiment, and the path integral grand canonical Monte Carlo method (PIGCMC) is very good, even at high pressures. CP-PIGEMC is a particularly useful method for simulation of one-component quantum fluid composed of Boltzmannons at finite temperatures, when the chemical potential is difficult to measure or calculate explicitly.

18.
J Colloid Interface Sci ; 391: 74-85, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23107168

RESUMO

Experimental results of benzene and nitrogen adsorption from gaseous phase and benzene adsorption and kinetics of the process from aqueous solution, measured on a series of eight commercial closed carbon nanotubes, are presented. Additionally we show the results of adsorption on compressed nanotubes. Using simple analytical approach and the analysis of adsorption and kinetics results it is concluded that in the "architecture" of nanotubes very important role has been played by isolated nanotubes.

19.
Phys Chem Chem Phys ; 15(1): 291-8, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23165364

RESUMO

A strategy for combined experimental and computational screening of candidate carbonaceous materials for capturing highly volatile nerve agents at ambient temperature using physisorption. Based on theoretical calculations of Henry constants and zero-coverage adsorption enthalpies for sarin and DMMP (its common stimulant) adsorbed in model slit-shaped carbon pores at 298 K, we found the following. Slit-shaped carbon pores with pore width ~0.5 nm are optimal for agent adsorption due to strong confinement of adsorbed molecules. Agent adsorption enthalpy at zero coverage computed for optimal pore width is very high and reaches ~83 kJ mol(-1). Widening of pore width above ~1 nm results in a significant decrease of the Henry constant and zero-coverage adsorption enthalpy (~44 kJ mol(-1)). Polydispersity of studied candidate carbonaceous materials strongly affects adsorption capacity for DMMP under the operating conditions. The optimal carbonaceous adsorbent, pitch-based P7 activated carbon fiber, adsorbed ~100 µg g(-1) DMMP at 0.03 µg m(-3). Commercial Norit activated carbon adsorbed only ~20 µg g(-1) DMMP at 0.03 µg m(-3). Surprisingly, a small shift of the pore size distribution towards wider micropores has a great impact on agent adsorption. Because the adsorption enthalpies computed at zero coverage weakly dependent on pore size, the heat released during agent adsorption is similar for all studied candidate adsorbents (i.e.~55-60 kJ mol(-1)).

20.
Phys Chem Chem Phys ; 15(4): 1232-40, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23229231

RESUMO

A new modelling-aided approach for the atomistic model of single walled carbon nanohorn (SWNH) creation is presented, based on experimental evidence, on realistic potential of carbon-carbon interactions and on molecular simulations. A new model of SWNHs is next used to predict Ar adsorption properties and to check the molecular fundamentals of the adsorption mechanism. The influence of the apex angle value, nanohorn diameter and nanohorn length on the shapes of isotherms, enthalpy, high resolution α(s)-plots and adsorption potential distribution curves is checked. Finally the comparison with new experimental Ar adsorption results is shown and the conclusions on the porosity of real SWNH aggregates are given.


Assuntos
Nanotubos de Carbono/química , Adsorção , Argônio/química , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA