Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33454433

RESUMO

Temporal expression patterns and activity of two cyclooxygenase (COX-1 and COX-2) isoforms were analysed during early chick embryogenesis to evaluate their roles in development. COX-2 inhibition with etoricoxib resulted in significant structural anomalies such as anophthalmia (born without one or both eyes), phocomelia (underdeveloped or truncated limbs), and gastroschisis (an opening in the abdominal wall), indicating its significance in embryogenesis. Furthermore, the levels of PGE2, PGD2, PGF2α, and TXB2 were assessed using quantitative LC-MS/MS to identify which effector prostanoid (s) had their synthesis initiated by COX-2. COX-2 inhibition was only shown to reduce the level of PGE2 significantly, and hence it could be inferred that the later could be largely under the regulation of activated COX-2 in chick embryos. The compensatory increase in the activity of COX-1 observed in the etoricoxib-treated group helped to maintain the levels of PGD2, PGF2α, and TXB2. Though the roles of these three prostanoids in embryogenesis need to be further clarified, it appears that their contribution to the observed developmental anomalies is minimal. This study has shown that COX-2 is functionally active during chick embryogenesis, and it plays a central role in the structural configuration of several organs and tissues through its downstream effector molecule PGE2.


Assuntos
Proteínas Aviárias/metabolismo , Embrião de Galinha/embriologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Animais , Proteínas Aviárias/genética , Embrião de Galinha/anormalidades , Embrião de Galinha/efeitos dos fármacos , Embrião de Galinha/metabolismo , Galinhas , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos
2.
Molecules ; 24(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284429

RESUMO

Xenobiotic detoxification in plant as well as in animals has mostly been studied in relationship to the deactivation of the toxic residues of the compound that, surely for azoxystrobin, is represented by its ß-methoxyacrylate portion. In maize roots treated for 96 h with azoxystrobin, the fungicide accumulated over time and detoxification compounds or conjugates appeared timewise. The main detoxified compound was the methyl ester hydrolysis product (azoxystrobin free acid, 390.14 m/z) thought to be inactive followed by the glutathione conjugated compounds identified as glutathione conjugate (711.21 m/z) and its derivative lacking the glycine residue from the GSH (654.19 m/z). The glycosylated form of azoxystrobin was also found (552.19 m/z) in a minor amount. The identification of these analytes was done by differential untargeted metabolomics analysis using Progenesis QI for label free spectral counting quantification and MS/MS confirmation of the compounds was carried out by either Data Independent Acquisition (DIA) and Data Dependent Acquisition (DDA) using high resolution LC-MS methods. Neutral loss scanning and comparison with MS/MS spectra of azoxystrobin by DDA and MSe confirmed the structures of these new azoxystrobin GSH conjugates.


Assuntos
Cromatografia Líquida/métodos , Glutationa/metabolismo , Metaboloma , Raízes de Plantas/metabolismo , Pirimidinas/metabolismo , Estrobilurinas/metabolismo , Espectrometria de Massas em Tandem/métodos , Zea mays/metabolismo , Glutationa/química , Íons , Pirimidinas/química , Estrobilurinas/química
3.
Metabolites ; 9(4)2019 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-31013937

RESUMO

Metabolite identification for untargeted metabolomics is often hampered by the lack of experimentally collected reference spectra from tandem mass spectrometry (MS/MS). To circumvent this problem, Competitive Fragmentation Modeling-ID (CFM-ID) was developed to accurately predict electrospray ionization-MS/MS (ESI-MS/MS) spectra from chemical structures and to aid in compound identification via MS/MS spectral matching. While earlier versions of CFM-ID performed very well, CFM-ID's performance for predicting the MS/MS spectra of certain classes of compounds, including many lipids, was quite poor. Furthermore, CFM-ID's compound identification capabilities were limited because it did not use experimentally available MS/MS spectra nor did it exploit metadata in its spectral matching algorithm. Here, we describe significant improvements to CFM-ID's performance and speed. These include (1) the implementation of a rule-based fragmentation approach for lipid MS/MS spectral prediction, which greatly improves the speed and accuracy of CFM-ID; (2) the inclusion of experimental MS/MS spectra and other metadata to enhance CFM-ID's compound identification abilities; (3) the development of new scoring functions that improves CFM-ID's accuracy by 21.1%; and (4) the implementation of a chemical classification algorithm that correctly classifies unknown chemicals (based on their MS/MS spectra) in >80% of the cases. This improved version called CFM-ID 3.0 is freely available as a web server. Its source code is also accessible online.

4.
Chemosphere ; 195: 624-631, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29287271

RESUMO

Hairy roots induced by Agrobacterium rhizogenes are well established models to study the metabolism of xenobiotics in plants for phytoremediation purposes. However, the model requires special skills and resources for growing and is a time-consuming process. The roots induction process alters the genetic construct of a plant and is known to express genes that are normally absent from the non-transgenic plants. In this study, we propose and establish a non-transgenic maize root model to study xenobiotic metabolism in plants for phytoremediation purpose using azoxystrobin as a xenobiotic compound. Maize roots were grown aseptically in Murashige and Skoog medium for two weeks and were incubated in 100 µM azoxystrobin solution. Azoxystrobin was taken up by the roots to the highest concentration within 15 min of treatment and its phase I metabolites were also detected at the same time. Conjugated metabolites of azoxystrobin were detected and their identities were confirmed by enzymatic and mass spectrometric methods. Further, azoxystrobin metabolites identified in maize root culture were compared against azoxystrobin metabolites in azoxystrobin sprayed lettuce grown in green house. A very close similarity between metabolites identified in maize root culture and lettuce plant was obtained. The results from this study establish that non-transgenic maize roots can be used for xenobiotic metabolism studies instead of genetically transformed hairy roots due to the ease of growing and handling.


Assuntos
Biodegradação Ambiental , Biotransformação/fisiologia , Raízes de Plantas/metabolismo , Pirimidinas/metabolismo , Estrobilurinas/metabolismo , Zea mays/metabolismo , Agrobacterium/metabolismo , Lactuca/metabolismo , Raízes de Plantas/microbiologia , Zea mays/microbiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-28934012

RESUMO

Lettuce is an important part of the diet in Europe. The permitted levels of pesticides in lettuce are strictly regulated and there is growing urge among food safety authorities to analyse pesticide metabolites as well. Azoxystrobin is one of pesticides that is frequently detected in lettuce. Although there are several analytical methods for the determination of azoxystrobin in lettuce, a sensitive method for the determination of its metabolites in lettuce is lacking. This study aimed at developing an extraction and LC-MS/MS method for the simultaneous determination of azoxystrobin, and its metabolites azoxystrobin free acid and 2-hydroxybenzonitrile in lettuce. Accelerated solvent extraction, QuEChERS extraction, and shaking extraction were compared using various solvents. The final method consisted of shaking freeze-dried sample in 0.1% formic acid in 80% aqueous acetonitrile. The selected method was validated by spiking each analyte at 125 ng/g and 500 ng/g. The method resulted in acceptable recovery for 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin, with a RSD of <10%. The matrix-matched calibration curve for each analyte was linear over the range of quantification, with a correlation coefficient ≥0.98. The method was sensitive for the determination of 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin, with limits of quantification of 0.36, 0.48, and 0.68 ng/g dry weight, respectively. The method was successfully applied to quantify 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin in greenhouse-grown lettuce.


Assuntos
Acetonitrilas/análise , Contaminação de Alimentos/análise , Formiatos/análise , Lactuca/química , Nitrilas/análise , Pirimidinas/análise , Pirimidinas/metabolismo , Estrobilurinas/análise , Estrobilurinas/metabolismo , Acetonitrilas/metabolismo , Cromatografia Líquida , Formiatos/metabolismo , Nitrilas/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA