Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(2)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37092399

RESUMO

Continuum robots have often been compared with rigid-link designs through conventional performance metrics (e.g., precision and Jacobian-based indicators). However, these metrics were developed to suit rigid-link robots and are tuned to capture specific facets of performance, in which continuum robots do not excel. Furthermore, conventional metrics either fail to capture the key advantages of continuum designs, such as their capability to operate in complex environments thanks to their slender shape and flexibility, or see them as detrimental (e.g., compliance). Previous work has rarely addressed this issue, and never in a systematic way. Therefore, this paper discusses the facets of a continuum robot performance that cannot be characterized by existing indicator and aims at defining a tailored framework of geometrical specifications and kinetostatic indicators. The proposed framework combines the geometric requirements dictated by the target environment and a methodology to obtain bioinspired reference metrics from a biological equivalent of the continuum robot (e.g., a snake, a tentacle, or a trunk). A numerical example is then reported for a swimming snake robot use case.

2.
Biomimetics (Basel) ; 7(4)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36546923

RESUMO

Replicating animal movements with robots provides powerful research tools because key parameters can be manipulated at will. Facing the lack of standard methods and the high complexity of biological systems, an incremental bioinspired approach is required. We followed this method to design a snake robot capable of reproducing the natural swimming gait of snakes, i.e., the lateral undulations of the whole body. Our goal was to shift away from the classical broken line design of poly-articulated snake robots to mimic the far more complex fluid movements of snakes. First, we examined the musculoskeletal systems of different snake species to extract key information, such as the flexibility or stiffness of the body. Second, we gathered the swimming kinematics of living snakes. Third, we developed a toolbox to implement the data that are relevant to technical solutions. We eventually built a prototype of an artificial body (not yet fitted with motors) that successfully reproduced the natural fluid lateral undulations of snakes when they swim. This basis is an essential step for designing realistic autonomous snake robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA