Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Reprod ; 30(12): 2725-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26466911

RESUMO

STUDY QUESTION: Do the luminal fluids of the epididymis and the vas deferens contribute to sperm chromatin fragmentation (SCF) in mice? SUMMARY ANSWER: The luminal fluids of both organs are required for activating SCF in mice, but the vas deferens luminal fluid does this more efficiently than that of the epididymis. WHAT IS KNOWN ALREADY: Mice sperm have the ability to degrade their DNA in an apoptotic-like fashion when treated with divalent cations in a process termed SCF. SCF has two steps: the induction of reversible double-strand DNA breaks at the nuclear matrix attachment sites, followed by the irreversible degradation of DNA by nuclease. Single stranded DNA breaks accompany SCF. STUDY DESIGN, SIZE, DURATION: Luminal fluids from two reproductive organs of the mouse (B6D2F1 strain), the epididymis and vas deferens, were extracted and tested for SCF activation with divalent cations using four different combinations of the sperm and the surrounding luminal fluids: (i) in situ--sperm were kept in their luminal fluid and activated directly; (ii) reconstituted--sperm were centrifuged and resuspended in their luminal fluid before SCF activation; (iii) mixed--sperm were centrifuged and resuspended in the luminal fluid of the other organ; (iv) no luminal fluid--sperm were centrifuged and reconstituted in buffer. All four experiments were performed without (controls) and with divalent cations (resulting in SCF). For each experimental condition, two different mice were used and the analyses averaged. PARTICIPANTS/MATERIALS, SETTING, METHODS: DNA damage by SCF was analyzed by three different methods, the sperm chromatin structure assay (SCSA), terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) analysis and field inversion gel electrophoresis. MAIN RESULTS AND THE ROLE OF CHANCE: In all three assays that we used, the vas deferens luminal fluid was much more efficient in stimulating SCF in the sperm from either source than that of the epididymis (P < 0.0001). Vas deferens sperm were capable of initiating lower levels of SCF in the absence of luminal fluid (P < 0.0001). LIMITATIONS, REASONS FOR CAUTION: Analyses were performed in only one species, the mouse, but we used three separate assays in our analysis. WIDER IMPLICATIONS OF THE FINDINGS: The data suggest that the luminal fluid of the male reproductive tract interacts with sperm during their transit providing a mechanism to degrade the DNA. We hypothesize that this is part of an apoptotic-like mechanism that allows the reproductive tract to eliminate defective sperm. The SCF model also allowed us to identify differences in the types of DNA lesions that the three tests can identify, providing important background information for the use of these tests clinically.


Assuntos
Cromatina/metabolismo , Dano ao DNA/fisiologia , Epididimo/metabolismo , Espermatozoides/metabolismo , Ducto Deferente/metabolismo , Animais , Fragmentação do DNA , Masculino , Camundongos
2.
Asian J Androl ; 17(4): 610-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25926613

RESUMO

The highly condensed chromatin of mammalian spermatozoa is usually considered to be biologically inert before fertilization. However, we have demonstrated that even in this compacted state, sperm chromatin is subject to degradation at open configurations associated with the nuclear matrix through a process we have termed sperm chromatin fragmentation (SCF). This suggests that a mechanism exists to monitor the health of spermatozoa during transit through the male reproductive tract and to destroy the genome of defective sperm cells. The site of DNA damage in SCF, the matrix attachment sites, are the same that we hypothesize initiate DNA synthesis in the zygote. When sperm that have damaged DNA are injected into the oocyte, the newly created zygote responds by delaying DNA synthesis in the male pronucleus and, if the damage is severe enough, arresting the embryo's development. Here we present a model for paternal DNA regulation by the nuclear matrix that begins during sperm maturation and continues through early embryonic development.


Assuntos
DNA/genética , Matriz Nuclear/genética , Matriz Nuclear/ultraestrutura , Espermatozoides/ultraestrutura , Montagem e Desmontagem da Cromatina , Replicação do DNA , Humanos , Masculino
3.
PLoS One ; 8(2): e56385, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431372

RESUMO

Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF). SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B) followed by irreversible DNA degradation by a nuclease(s). Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes) and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development.


Assuntos
Fragmentação do DNA , Replicação do DNA , Desenvolvimento Embrionário , Espermatozoides/metabolismo , Zigoto/crescimento & desenvolvimento , Animais , Núcleo Celular , Cromatina/genética , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular , Histonas/metabolismo , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Injeções de Esperma Intracitoplásmicas
4.
J Biol Chem ; 287(52): 43424-37, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23118220

RESUMO

Modulation of integrin activation is important in many cellular functions including adhesion, migration, and assembly of the extracellular matrix. RSK2 functions downstream of Ras/Raf and promotes tumor cell motility and metastasis. We therefore investigated whether RSK2 affects integrin function. We report that RSK2 mediates Ras/Raf inactivation of integrins. As a result, we find that RSK2 impairs cell adhesion and integrin-mediated matrix assembly and promotes cell motility. Active RSK2 appears to affect integrins by reducing actin stress fibers and disrupting focal adhesions. Moreover, RSK2 co-localizes with the integrin activator talin and is present at integrin cytoplasmic tails. It is thereby in a position to modulate integrin activation and integrin-mediated migration. Activation of RSK2 promotes filamin phosphorylation and binding to integrins. We also find that RSK2 is activated in response to integrin ligation to fibronectin. Thus, RSK2 could participate in a feedback loop controlling integrin function. These results reveal RSK2 as a key regulator of integrin activity and provide a novel mechanism by which it may promote cell migration and cancer metastasis.


Assuntos
Movimento Celular/fisiologia , Integrinas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Células CHO , Adesão Celular/fisiologia , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Cricetinae , Cricetulus , Ativação Enzimática/fisiologia , Filaminas , Células HeLa , Humanos , Integrinas/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Talina/genética , Talina/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
5.
Int J Cancer ; 131(7): 1556-68, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22213050

RESUMO

ERK and RSK2 drive proliferation and invasion of many cancers. Phosphoprotein enriched in astrocytes 15 (PEA15) binds ERK and RSK2 and high PEA15 levels can impair ERK- and RSK2-dependent transcription. PEA15 expression also inversely correlates with cell motility and invasiveness. We therefore tested PEA15 effects on neuroblastoma cells in vitro. We further analyzed PEA15 expression in the context of clinical and genetic features of neuroblastoma in tumor samples to determine its correlation with disease progression. Affymetrix microarray analysis was performed using 24 different neuroblastoma cell lines. Cell lines expressing low to intermediate levels of PEA15 were chosen for in vitro functional studies. The cell line results were verified by Affymetrix analysis of three different neuroblastic tumor types (total of 110 samples) PEA15 overexpression inhibited neuroblastoma migration in vitro. We verified that inhibition of motility required PEA15 interaction with its binding partners ERK and RSK2. Additionally, synthetic inhibitors of RSK2 suppressed integrin-dependent migration. PEA15 expression correlates with clinical parameters and a 25% increase in patient survival rate. The highest PEA15 levels were found in low stage, more differentiated and less metastatic neuroblastic tumors, and correlated with lack of MYCN amplification. PEA15 blocks neuroblastoma migration through inhibition of ERK/RSK2 signaling. PEA15 expression levels correlate with favorable clinical features suggesting that PEA15 limits metastatic progression of neuroblastoma. Thus, PEA15 and its partners ERK and RSK2 are potential targets for the development of new therapeutics to impede progression of minimal residual disease in patients with high-risk neuroblastoma.


Assuntos
Movimento Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Fosfoproteínas/genética , Animais , Proteínas Reguladoras de Apoptose , Células COS , Adesão Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Aberrações Cromossômicas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Amplificação de Genes , Humanos , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/mortalidade , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Fosfoproteínas/metabolismo , Prognóstico , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
6.
PLoS One ; 5(6): e11269, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20585650

RESUMO

BACKGROUND: Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins. METHODS AND FINDINGS: We identified Filamin A (FLNa) as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin beta1, beta2 and beta7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaDelta3) abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaDelta3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly. CONCLUSIONS: These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration.


Assuntos
Movimento Celular/fisiologia , Proteínas Contráteis/fisiologia , Melanoma/patologia , Proteínas dos Microfilamentos/fisiologia , Proteínas ras/fisiologia , Sequência de Bases , Western Blotting , Primers do DNA , Filaminas , Humanos , Microscopia de Fluorescência
7.
FASEB J ; 24(8): 2818-28, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20354143

RESUMO

PEA-15 is a death effector domain-containing phosphoprotein that binds ERK and restricts it to the cytoplasm. PEA-15 also binds to FADD and thereby blocks apoptosis induced by death receptors. Abnormal expression of PEA-15 is associated with type II diabetes and some cancers; however, its physiological function remains unclear. To determine the function of PEA-15 in vivo, we used C57BL/6 mice in which the PEA-15 coding region was deleted. We thereby found that PEA-15 regulates T-cell proliferation. PEA-15-null mice did not have altered thymic or splenic lymphocyte cellularity or differentiation. However, PEA-15 deficient T cells had increased CD3/CD28-induced nuclear translocation of ERK and increased activation of IL-2 transcription and secretion in comparison to control wild-type littermates. Indeed, activation of the T-cell receptor in wild-type mice caused PEA-15 release of ERK. In contrast, overexpression of PEA-15 in Jurkat T cells blocked nuclear translocation of ERK and IL-2 transcription. Finally, PEA-15-null T cells showed increased IL-2 dependent proliferation on stimulation. No differences in T cell susceptibility to apoptosis were found. Thus, PEA-15 is a novel player in T-cell homeostasis. As such this work may have far reaching implications in understanding how the immune response is controlled.


Assuntos
Fosfoproteínas/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Proteínas Reguladoras de Apoptose , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interleucina-2/genética , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/deficiência , Fosfoproteínas/imunologia , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA