Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122463, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299105

RESUMO

This study critically examines future carbon (CO2) emissions in the Belt & Road Initiative (BRI) region, considering factors such as energy consumption, economic growth, population growth, and population density. The objective of this study is to identify critical areas of higher emissions, which require policy intervention capable of strengthening sustainability in the BRI compact. A combined approach of stochastic modeling and Monte Carlo simulations was employed, utilizing panel data from 45 countries in the BRI region from 1990 to 2021. Results confirm that emissions are higher in all scenarios in direct proportion to electric power consumption, population growth, and Gross Domestic Product (GDP) growth. In scenarios with high emissions, a continuous and significant upward trend in CO2 emissions was observe. The medium emissions scenario exhibited a more moderated rise in emissions, suggesting a balance between economic development and environmental considerations. Critical areas for future environmental policy-making resides in electric power consumption, population growth, and GDP growth. The study strongly recommends for a shift from the current focus on road and railway infrastructure to renewable energy infrastructure, green innovations and efficient technology transfer to member countries. Without this, the BRI region is likely to face increased emissions, posing significant challenges to future sustainable development and global environmental sustainability.

2.
Cureus ; 16(8): e66925, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39280440

RESUMO

Recent advancements in artificial intelligence (AI) applications in medicine have been significant over the past 30 years. To monitor current research developments, it is crucial to examine the latest trends in AI adoption across various medical fields. This bibliometric analysis focuses on AI applications in cardiology. Unlike existing literature reviews, this study specifically examines journal articles published in the last decade, sourced from both Scopus and Web of Science databases, to illustrate the recent trends in AI within cardiology. The bibliometric analysis involves a statistical and quantitative evaluation of the literature on AI application in cardiovascular medicine over a defined period. A comprehensive global literature review is conducted to identify key research areas, authors, and their interrelationships through published works. The leading institutions and most influential authors in research on the role of AI in cardiology were located in the United States, the United Kingdom, and China. This study also provides researchers with an overview of the evolution of research in AI and cardiology. The main contribution of this study is to highlight the prominent authors, countries, journals, institutions, keywords, and trends in the development of AI in cardiology.

3.
Sci Total Environ ; 897: 165290, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406703

RESUMO

In the present study, the ability of a coating of zinc oxide (ZnO) powder to improve the fire-safety of wood exposed to radiative heat flux was examined, focusing on the ignition time of the wood. To test ZnO's efficiency on the wood substrate, two different amounts of ZnO (0.5 and 1 g ZnO per dm2) were applied to the wood surface and exposed to radiative heat from a cone calorimeter wherein a pristine piece of wood with no ZnO treatment was taken as control. The experiments were conducted at three different irradiation levels i.e., 20, 35, and 50 kWm-2. The results showed that applying ZnO on the surface of the wood significantly increased the ignition time (TTI). For the three different heat fluxes, using 0.5 g ZnO per dm2 coating on the wood surface increased the TTI by 26-33 %. Furthermore, the application of 1 g of ZnO per dm2 generated a TTI increment of 37-40 %. All three irradiation levels showed similar trends in TTI. The micrographs taken before and after combustion showed no significant disparity in the morphology of ZnO. The agglomerated ZnO particles on the wood surface remained intact after combustion. This study demonstrates a facile method of using ZnO to delay the ignition of wood. This could potentially impart fire-safety to wooden structures/façades in wildland-urban interfaces and elsewhere by reducing flame spread.

4.
Nature ; 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33318699
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA