Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 176(5): 1040-1053.e17, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712872

RESUMO

Sphingomyelin and cholesterol are essential lipids that are enriched in plasma membranes of animal cells, where they interact to regulate membrane properties and many intracellular signaling processes. Despite intense study, the interaction between these lipids in membranes is not well understood. Here, structural and biochemical analyses of ostreolysin A (OlyA), a protein that binds to membranes only when they contain both sphingomyelin and cholesterol, reveal that sphingomyelin adopts two distinct conformations in membranes when cholesterol is present. One conformation, bound by OlyA, is induced by stoichiometric, exothermic interactions with cholesterol, properties that are consistent with sphingomyelin/cholesterol complexes. In its second conformation, sphingomyelin is free from cholesterol and does not bind OlyA. A point mutation abolishes OlyA's ability to discriminate between these two conformations. In cells, levels of sphingomyelin/cholesterol complexes are held constant over a wide range of plasma membrane cholesterol concentrations, enabling precise regulation of the chemical activity of cholesterol.


Assuntos
Membrana Celular/ultraestrutura , Esfingomielinas/metabolismo , Esfingomielinas/fisiologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Colesterol/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/ultraestrutura , Humanos , Microdomínios da Membrana/metabolismo , Conformação Molecular
2.
J Biol Chem ; 293(21): 7942-7968, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29626090

RESUMO

In aortic vascular smooth muscle (VSM), the canonical Wnt receptor LRP6 inhibits protein arginine (Arg) methylation, a new component of noncanonical Wnt signaling that stimulates nuclear factor of activated T cells (viz NFATc4). To better understand how methylation mediates these actions, MS was performed on VSM cell extracts from control and LRP6-deficient mice. LRP6-dependent Arg methylation was regulated on >500 proteins; only 21 exhibited increased monomethylation (MMA) with concomitant reductions in dimethylation. G3BP1, a known regulator of arteriosclerosis, exhibited a >30-fold increase in MMA in its C-terminal domain. Co-transfection studies confirm that G3BP1 (G3BP is Ras-GAP SH3 domain-binding protein) methylation is inhibited by LRP6 and that G3BP1 stimulates NFATc4 transcription. NFATc4 association with VSM osteopontin (OPN) and alkaline phosphatase (TNAP) chromatin was increased with LRP6 deficiency and reduced with G3BP1 deficiency. G3BP1 activation of NFATc4 mapped to G3BP1 domains supporting interactions with RIG-I (retinoic acid inducible gene I), a stimulus for mitochondrial antiviral signaling (MAVS) that drives cardiovascular calcification in humans when mutated in Singleton-Merten syndrome (SGMRT2). Gain-of-function SGMRT2/RIG-I mutants increased G3BP1 methylation and synergized with osteogenic transcription factors (Runx2 and NFATc4). A chemical antagonist of G3BP, C108 (C108 is 2-hydroxybenzoic acid, 2-[1-(2-hydroxyphenyl)ethylidene]hydrazide CAS 15533-09-2), down-regulated RIG-I-stimulated G3BP1 methylation, Wnt/NFAT signaling, VSM TNAP activity, and calcification. G3BP1 deficiency reduced RIG-I protein levels and VSM osteogenic programs. Like G3BP1 and RIG-I deficiency, MAVS deficiency reduced VSM osteogenic signals, including TNAP activity and Wnt5-dependent nuclear NFATc4 levels. Aortic calcium accumulation is decreased in MAVS-deficient LDLR-/- mice fed arteriosclerotic diets. The G3BP1/RIG-I/MAVS relay is a component of Wnt signaling. Targeting this relay may help mitigate arteriosclerosis.


Assuntos
Antivirais/metabolismo , Aorta/patologia , Arteriosclerose/patologia , Calcinose/patologia , DNA Helicases/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Aorta/metabolismo , Arteriosclerose/genética , Arteriosclerose/metabolismo , Calcinose/genética , Calcinose/metabolismo , Cálcio/metabolismo , Células Cultivadas , DNA Helicases/genética , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Receptores de LDL/fisiologia , Transdução de Sinais , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
3.
Curr Opin Lipidol ; 28(5): 387-396, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28723729

RESUMO

PURPOSE OF REVIEW: Cardiometabolic diseases increasingly afflict our aging, dysmetabolic population. Complex signals regulating low-density lipoprotein receptor-related protein (LRP) and frizzled protein family members - the plasma membrane receptors for the cadre of Wnt polypeptide morphogens - contribute to the control of cardiovascular homeostasis. RECENT FINDINGS: Both canonical (ß-catenin-dependent) and noncanonical (ß-catenin-independent) Wnt signaling programs control vascular smooth muscle (VSM) cell phenotypic modulation in cardiometabolic disease. LRP6 limits VSM proliferation, reduces arteriosclerotic transcriptional reprogramming, and preserves insulin sensitivity while LRP5 restrains foam cell formation. Adipose, skeletal muscle, macrophages, and VSM have emerged as important sources of circulating Wnt ligands that are dynamically regulated during the prediabetes-diabetes transition with cardiometabolic consequences. Platelets release Dkk1, a LRP5/LRP6 inhibitor that induces endothelial inflammation and the prosclerotic endothelial-mesenchymal transition. By contrast, inhibitory secreted frizzled-related proteins shape the Wnt signaling milieu to limit myocardial inflammation with ischemia-reperfusion injury. VSM sclerostin, an inhibitor of canonical Wnt signaling in bone, restrains remodeling that predisposes to aneurysm formation, and is downregulated in aneurysmal vessels by epigenetic methylation. SUMMARY: Components of the Wnt signaling cascade represent novel targets for pharmacological intervention in cardiometabolic disease. Conversely, strategies targeting the Wnt signaling cascade for other therapeutic purposes will have cardiovascular consequences that must be delineated to establish clinically useful pharmacokinetic-pharmacodynamic relationships.


Assuntos
Doenças Cardiovasculares/patologia , Via de Sinalização Wnt , Animais , Doenças Cardiovasculares/metabolismo , Humanos , Receptores de Lipoproteínas/metabolismo
4.
Elife ; 62017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28169829

RESUMO

Cholesterol partitions into accessible and sequestered pools in cell membranes. Here, we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals, but varied >10 fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessibility. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans.


Assuntos
Proteínas de Bactérias/metabolismo , Colesterol/análise , Eritrócitos/química , Glicoproteínas de Membrana/metabolismo , Adolescente , Adulto , Etnicidade , Feminino , Fluorometria , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Adulto Jovem
5.
Biophys J ; 108(6): 1459-1469, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25809258

RESUMO

Many cellular processes are sensitive to levels of cholesterol in specific membranes and show a strongly sigmoidal dependence on membrane composition. The sigmoidal responses of the cholesterol sensors involved in these processes could arise from several mechanisms, including positive cooperativity (protein effects) and limited cholesterol accessibility (membrane effects). Here, we describe a sigmoidal response that arises primarily from membrane effects due to sharp changes in the chemical activity of cholesterol. Our models for eukaryotic membrane-bound cholesterol sensors are soluble bacterial toxins that show an identical switch-like specificity for endoplasmic reticulum membrane cholesterol. We show that truncated versions of these toxins fail to form oligomers but still show sigmoidal binding to cholesterol-containing membranes. The nonlinear response emerges because interactions between bilayer lipids control cholesterol accessibility to toxins in a threshold-like fashion. Around these thresholds, the affinity of toxins for membrane cholesterol varies by >100-fold, generating highly cooperative lipid-dependent responses independently of protein-protein interactions. Such lipid-driven cooperativity may control the sensitivity of many cholesterol-dependent processes.


Assuntos
Toxinas Bacterianas/química , Colesterol/química , Bicamadas Lipídicas/química , Bacillus anthracis , Proteínas de Bactérias/química , Clostridium perfringens , Citotoxinas/química , Retículo Endoplasmático/química , Escherichia coli , Proteínas Hemolisinas/química , Lipossomos/química , Glicoproteínas de Membrana/química , Modelos Moleculares , Dinâmica não Linear , Fosfatidilcolinas/química , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química
6.
Cell Host Microbe ; 10(1): 65-74, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21767813

RESUMO

CREB3L1/OASIS is a cellular transcription factor synthesized as a membrane-bound precursor and activated by regulated intramembrane proteolysis in response to stimuli like ER stress. Comparing gene expression between Huh7 subclones that are permissive for hepatitis C virus (HCV) replication versus the nonpermissive parental Huh7 cells, we identified CREB3L1 as a host factor that inhibits proliferation of virus-infected cells. Upon infection with diverse DNA and RNA viruses, including murine γ-herpesvirus 68, HCV, West Nile virus (WNV), and Sendai virus, CREB3L1 was proteolytically cleaved, allowing its NH(2) terminus to enter the nucleus and induce multiple genes encoding inhibitors of the cell cycle to block cell proliferation. Consistent with this, we observed a necessity for CREB3L1 expression to be silenced in proliferating cells that harbor replicons of HCV or WNV. Our results indicate that CREB3L1 may play an important role in limiting virus spread by inhibiting proliferation of virus-infected cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hepacivirus/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas do Tecido Nervoso/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Hepacivirus/fisiologia , Hepatócitos/virologia , Humanos , Proteínas do Tecido Nervoso/genética , Replicon , Rhadinovirus/patogenicidade , Vírus Sendai/patogenicidade , Replicação Viral , Vírus do Nilo Ocidental/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA