Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Russo | MEDLINE | ID: mdl-37796065

RESUMO

Selective and progressive death of neurons is a characteristic feature of the process of neurodegeneration and leads to corresponding neuronal dysfunctions. Neurodegenerative diseases represent a heterogeneous group of clinically distinct disorders with similar molecular mechanisms of pathogenesis. They are based on the processes of abnormal aggregation of proteins, the formation of fibrillary insoluble structures and their deposition in the form of histopathological inclusions in the tissues of the nervous system. Disturbance of homeostatic functions that regulate neuronal ion and energy metabolism, biosynthesis and degradation of proteins and nucleotides, chronic hypoxia and the penetration of toxic and inflammatory substances into the brain from the bloodstream not only cause metabolic changes associated with age and disorders in the sleep-wake cycle, but also contribute to the development of neurodegenerative diseases. In animal studies, clearance pathways have been identified in which solutes and specific tracers are excreted perivascular into the meningeal lymphatics. The glymphatic pathway promotes the removal of metabolites, including Aß amyloid and tau protein, from the parenchymal extracellular space of the brain. The glymphatic system is discussed to be more efficient during natural sleep, and fluid dynamics through this pathway exhibit daily fluctuations and are under circadian control. This review systematizes the key aspects and the data of recent research on the role of the glymphatic pathway and astroglial AQP-4 as its main determinant in maintaining homeostatic fluid circulation in the brain in normal and pathological conditions, in particular in relation to the regulatory role of the sleep-wake cycle and in development of neurodegeneration.


Assuntos
Sistema Glinfático , Doenças Neurodegenerativas , Animais , Encéfalo , Homeostase , Proteínas Amiloidogênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA