Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Microbiol Spectr ; 12(1): e0314823, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38096459

RESUMO

IMPORTANCE: Campylobacter jejuni is a bacterium that is prevalent in the ceca of farmed poultry such as chickens. Consumption of ill-prepared poultry is thus the most common route by which C. jejuni infects the human gut to cause a typically self-limiting but severe gastrointestinal illness that can be fatal to very young, old, or immunocompromised people. The lack of a vaccine and an increasing resistance to current antibiotics highlight a need to better understand the mechanisms that make C. jejuni a successful human pathogen. This study focused on the functional components of one such mechanism-a molecular system that helps C. jejuni thrive despite the restriction on growth-available iron by the human body, which typically defends against pathogens. In providing a deeper understanding of how this system functions, this study contributes toward the goal of reducing the enormous global socioeconomic burden caused by C. jejuni.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Compostos Férricos , Metaloporfirinas , Doenças das Aves Domésticas , Animais , Humanos , Campylobacter jejuni/genética , Galinhas/microbiologia , Ferro , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/microbiologia , Aves Domésticas , Doenças das Aves Domésticas/microbiologia
2.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461706

RESUMO

Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. Acute infection can be antecedent to highly debilitating long-term sequelae. Expression of iron acquisition systems is vital for C. jejuni to survive the low iron availability within the human gut. The C. jejuni fetMP-fetABCDEF gene cluster is known to be upregulated during human infection and under iron limitation. While FetM and FetP have been functionally linked to iron transport in prior work, here we assess the contribution by each of the downstream genes ( fetABCDEF ) to C. jejuni growth during both iron-depleted and iron-replete conditions. Significant growth impairment was observed upon disruption of fetA , fetB, fetC , and fetD , suggesting a role in iron acquisition for each encoded protein. FetA expression was modulated by iron-availability but not dependent on the presence of FetB, FetC, FetD, FetE or FetF. Functions of the putative thioredoxins FetE and FetF were redundant in iron scavenging, requiring a double deletion (Δ fetEF ) to exhibit a growth defect. C. jejuni FetE was expressed and the structure solved to 1.50 Å, revealing structural similarity to thiol-disulfide oxidases. Functional characterization in biochemical assays showed that FetE reduced insulin at a slower rate than E. coli Trx and that together, FetEF promoted substrate oxidation in cell extracts, suggesting that FetE (and presumably FetF) are oxidoreductases that can mediate oxidation in vivo . This study advances our understanding of the contributions by the fetMP-fetABCDEF gene cluster to virulence at a genetic and functional level, providing foundational knowledge towards mitigating C. jejuni -related morbidity and mortality.

3.
Front Microbiol ; 14: 1162806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143542

RESUMO

Campylobacter jejuni is a Gram-negative helical bacterium. Its helical morphology, maintained by the peptidoglycan (PG) layer, plays a key role in its transmission in the environment, colonization, and pathogenic properties. The previously characterized PG hydrolases Pgp1 and Pgp2 are important for generating C. jejuni helical morphology, with deletion mutants being rod-shaped and showing alterations in their PG muropeptide profiles in comparison to the wild type. Homology searches and bioinformatics were used to identify additional gene products involved in C. jejuni morphogenesis: the putative bactofilin 1104 and the M23 peptidase domain-containing proteins 0166, 1105, and 1228. Deletions in the corresponding genes resulted in varying curved rod morphologies with changes in their PG muropeptide profiles. All changes in the mutants complemented except 1104. Overexpression of 1104 and 1105 also resulted in changes in the morphology and in the muropeptide profiles, suggesting that the dose of these two gene products influences these characteristics. The related helical ε-Proteobacterium Helicobacter pylori has characterized homologs of C. jejuni 1104, 1105, and 1228 proteins, yet deletion of the homologous genes in H. pylori had differing effects on H. pylori PG muropeptide profiles and/or morphology compared to the C. jejuni deletion mutants. It is therefore apparent that even related organisms with similar morphologies and homologous proteins can have diverse PG biosynthetic pathways, highlighting the importance of studying PG biosynthesis in related organisms.

4.
J Biol Chem ; 296: 100528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711341

RESUMO

The helical morphology of Campylobacter jejuni, a bacterium involved in host gut colonization and pathogenesis in humans, is determined by the structure of the peptidoglycan (PG) layer. This structure is dictated by trimming of peptide stems by the LD-carboxypeptidase Pgp2 within the periplasm. The interaction interface between Pgp2 and PG to select sites for peptide trimming is unknown. We determined a 1.6 Å resolution crystal structure of Pgp2, which contains a conserved LD-carboxypeptidase domain and a previously uncharacterized domain with an NTF2-like fold (NTF2). We identified a pocket in the NTF2 domain formed by conserved residues and located ∼40 Å from the LD-carboxypeptidase active site. Expression of pgp2 in trans with substitutions of charged (Lys257, Lys307, Glu324) and hydrophobic residues (Phe242 and Tyr233) within the pocket did not restore helical morphology to a pgp2 deletion strain. Muropeptide analysis indicated a decrease of murotripeptides in the deletion strain expressing these mutants, suggesting reduced Pgp2 catalytic activity. Pgp2 but not the K307A mutant was pulled down by C. jejuni Δpgp2 PG sacculi, supporting a role for the pocket in PG binding. NMR spectroscopy was used to define the interaction interfaces of Pgp2 with several PG fragments, which bound to the active site within the LD-carboxypeptidase domain and the pocket of the NTF2 domain. We propose a model for Pgp2 binding to PG strands involving both the LD-carboxypeptidase domain and the accessory NTF2 domain to induce a helical cell shape.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/citologia , Carboxipeptidases/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Peptidoglicano/metabolismo , Campylobacter jejuni/metabolismo , Carboxipeptidases/química , Domínio Catalítico , Humanos , Conformação Proteica
5.
ISME J ; 14(12): 2997-3010, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32770116

RESUMO

Active migration across semi-solid surfaces is important for bacterial success by facilitating colonization of unoccupied niches and is often associated with altered virulence and antibiotic resistance profiles. We isolated an atmospheric contaminant, subsequently identified as a new strain of Bacillus mobilis, which showed a unique, robust, rapid, and inducible filamentous surface motility. This flagella-independent migration was characterized by formation of elongated cells at the expanding edge and was induced when cells were inoculated onto lawns of metabolically inactive Campylobacter jejuni cells, autoclaved bacterial biomass, adsorbed milk, and adsorbed blood atop hard agar plates. Phosphatidylcholine (PC), bacterial membrane components, and sterile human fecal extracts were also sufficient to induce filamentous expansion. Screening of eight other Bacillus spp. showed that filamentous motility was conserved amongst B. cereus group species to varying degrees. RNA-Seq of elongated expanding cells collected from adsorbed milk and PC lawns versus control rod-shaped cells revealed dysregulation of genes involved in metabolism and membrane transport, sporulation, quorum sensing, antibiotic synthesis, and virulence (e.g., hblA/B/C/D and plcR). These findings characterize the robustness and ecological significance of filamentous surface motility in B. cereus group species and lay the foundation for understanding the biological role it may play during environment and host colonization.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Bacillus , Bacillus cereus/genética , Proteínas de Bactérias/genética , Flagelos , Humanos , Virulência
6.
Mol Microbiol ; 112(1): 280-301, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31070821

RESUMO

Campylobacter jejuni is a prevalent enteric pathogen that changes morphology from helical to coccoid under unfavorable conditions. Bacterial peptidoglycan maintains cell shape. As C. jejuni transformed from helical to coccoid, peptidoglycan dipeptides increased and tri- and tetrapeptides decreased. The DL-carboxypeptidase Pgp1 important for C. jejuni helical morphology and putative N-acetylmuramoyl-L-alanyl amidase AmiA were both involved in the coccoid transition. Mutants in pgp1 and amiA showed reduced coccoid formation, with ∆pgp1∆amiA producing minimal coccoids. Both ∆amiA and ∆amiA∆pgp1 lacked flagella and formed unseparated chains of cells consistent with a role for AmiA in cell separation. All strains accumulated peptidoglycan dipeptides over time, but only strains capable of becoming coccoid displayed tripeptide changes. C. jejuni helical shape and corresponding peptidoglycan structure are important for pathogenesis-related attributes. Concomitantly, changing to a coccoid morphology resulted in differences in pathogenic properties; coccoid C. jejuni were non-motile and non-infectious, with minimal adherence and invasion of epithelial cells and an inability to stimulate IL-8. Coccoid peptidoglycan exhibited reduced activation of innate immune receptors Nod1 and Nod2 versus helical peptidoglycan. C. jejuni also transitioned to coccoid within epithelial cells, so the inability of the immune system to detect coccoid C. jejuni may be significant in its pathogenesis.


Assuntos
Campylobacter jejuni/metabolismo , Forma Celular/fisiologia , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/patogenicidade , Campylobacter jejuni/fisiologia , Carboxipeptidases/metabolismo , Parede Celular/metabolismo , Peptidoglicano/química , Peptidoglicano/imunologia
7.
mBio ; 9(4)2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087169

RESUMO

Campylobacter jejuni is a pathogenic bacterium that causes gastroenteritis in humans yet is a widespread commensal in wild and domestic animals, particularly poultry. Using RNA sequencing, we assessed C. jejuni transcriptional responses to medium supplemented with human fecal versus chicken cecal extracts and in extract-supplemented medium versus medium alone. C. jejuni exposed to extracts had altered expression of 40 genes related to iron uptake, metabolism, chemotaxis, energy production, and osmotic stress response. In human fecal versus chicken cecal extracts, C. jejuni displayed higher expression of genes involved in respiration (fdhTU) and in known or putative iron uptake systems (cfbpA, ceuB, chuC, and CJJ81176_1649-1655 [here designated 1649-1655]). The 1649-1655 genes and downstream overlapping gene 1656 were investigated further. Uncharacterized homologues of this system were identified in 33 diverse bacterial species representing 6 different phyla, 21 of which are associated with human disease. The 1649 and 1650 (p19) genes encode an iron transporter and a periplasmic iron binding protein, respectively; however, the role of the downstream 1651-1656 genes was unknown. A Δ1651-1656 deletion strain had an iron-sensitive phenotype, consistent with a previously characterized Δp19 mutant, and showed reduced growth in acidic medium, increased sensitivity to streptomycin, and higher resistance to H2O2 stress. In iron-restricted medium, the 1651-1656 and p19 genes were required for optimal growth when using human fecal extracts as an iron source. Collectively, this implicates a function for the 1649-1656 gene cluster in C. jejuni iron scavenging and stress survival in the human intestinal environment.IMPORTANCE Direct comparative studies of C. jejuni infection of a zoonotic commensal host and a disease-susceptible host are crucial to understanding the causes of infection outcome in humans. These studies are hampered by the lack of a disease-susceptible animal model reliably displaying a similar pathology to human campylobacteriosis. In this work, we compared the phenotypic and transcriptional responses of C. jejuni to intestinal compositions of humans (disease-susceptible host) and chickens (zoonotic host) by using human fecal and chicken cecal extracts. The mammalian gut is a complex and dynamic system containing thousands of metabolites that contribute to host health and modulate pathogen activity. We identified C. jejuni genes more highly expressed during exposure to human fecal extracts in comparison to chicken cecal extracts and differentially expressed in extracts compared with medium alone, and targeted one specific iron uptake system for further molecular, genetic, and phenotypic study.


Assuntos
Campylobacter jejuni/genética , Ceco/química , Misturas Complexas/farmacologia , Fezes/química , Ferro/metabolismo , Animais , Campylobacter jejuni/efeitos dos fármacos , Galinhas , Meios de Cultura/química , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Humanos , Fenótipo , Análise de Sequência de RNA , Estreptomicina/farmacologia , Transcriptoma
8.
Mol Microbiol ; 104(6): 948-971, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28316093

RESUMO

Campylobacter jejuni helical shape is important for colonization and host interactions with straight mutants having altered biological properties. Passage on calcofluor white (CFW) resulted in C. jejuni 81-176 isolates with morphology changes: either a straight morphology from frameshift mutations and single nucleotide polymorphisms in peptidoglycan hydrolase genes pgp1 or pgp2 or a reduction in curvature due a frameshift mutation in cjj81176_1105, a putative peptidoglycan endopeptidase. Shape defects were restored by complementation. Whole genome sequencing of CFW-passaged strains showed no specific changes correlating to CFW exposure. The cjj81176_1279 (recR; recombinational DNA repair) and cjj81176_1449 (unknown function) genes were highly variable in all 81-176 strains sequenced. A frameshift mutation in pgp1 of our laboratory isolate of the straight genome sequenced variant of 11168 (11168-GS) was also identified. The PG muropeptide profile of 11168-GS was identical to that of Δpgp1 in the original minimally passaged 11168 strain (11168-O). Introduction of wild type pgp1 into 11168-GS did not restore helical morphology. The recR gene was also highly variable in 11168 strains. Microbial cell-to-cell heterogeneity is proposed as a mechanism of ensuring bacterial survival in sub-optimal conditions. In certain environments, changes in C. jejuni morphology due to genetic heterogeneity may promote C. jejuni survival.


Assuntos
Campylobacter jejuni/citologia , Campylobacter jejuni/genética , Proteínas de Bactérias/metabolismo , Benzenossulfonatos , Infecções por Campylobacter/microbiologia , Células Clonais , Regulação Bacteriana da Expressão Gênica/genética , Peptidoglicano/metabolismo
9.
Infect Immun ; 84(12): 3399-3407, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27647867

RESUMO

Campylobacter jejuni is a helix-shaped enteric bacterial pathogen and a common cause of gastroenteritis. We recently developed a mouse model for this human pathogen utilizing the SIGIRR-deficient mouse strain, which exhibits significant intestinal inflammation in response to intestinal C. jejuni infection. In the current study, this mouse model was used to define whether C. jejuni's characteristic helical shape plays a role in its ability to colonize and elicit inflammation in the mouse intestine. Mice were infected with the previously characterized straight-rod Δpgp1 and Δpgp2 mutant strains, along with a newly characterized curved-rod Δ1228 mutant strain. We also compared the resultant infections and pathology to those elicited by the helix-shaped wild-type C. jejuni and complemented strains. Despite displaying wild-type colonization of the intestinal lumen, the straight-rod Δpgp1 and Δpgp2 mutants were essentially nonpathogenic, while all strains with a curved or helical shape retained their expected virulence. Furthermore, analysis of C. jejuni localization within the ceca of infected mice determined that the primary difference between the rod-shaped, nonpathogenic mutants and the helix-shaped, pathogenic strains was the ability to colonize intestinal crypts. Rod-shaped mutants appeared unable to colonize intestinal crypts due to an inability to pass through the intestinal mucus layer to directly contact the epithelium. Together, these results support a critical role for C. jejuni's helical morphology in enabling it to traverse and colonize the mucus-filled intestinal crypts of their host, a necessary step required to trigger intestinal inflammation in response to C. jejuni.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/citologia , Campylobacter jejuni/fisiologia , Intestinos/microbiologia , Muco , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Portador Sadio , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo
10.
J Biol Chem ; 291(43): 22686-22702, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27474744

RESUMO

Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target.


Assuntos
Campylobacter jejuni/metabolismo , Campylobacter jejuni/patogenicidade , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Fatores de Virulência/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/genética , Parede Celular/genética , Peptidoglicano/genética , Fatores de Virulência/genética
11.
ACS Chem Biol ; 11(4): 981-91, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26735022

RESUMO

Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 µM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials against these human pathogens.


Assuntos
Campylobacter jejuni/metabolismo , Helicobacter pylori/metabolismo
12.
mBio ; 6(5): e00612-15, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26419875

RESUMO

UNLABELLED: Phenotypic variation is prevalent in the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity enhances the survival and adaptive malleability of bacterial populations because variable phenotypes may allow some cells to be protected against future stress. Exposure to hyperosmotic stress previously revealed prevalent differences in growth between C. jejuni strain 81-176 colonies due to resistant or sensitive phenotypes, and these isolated colonies continued to produce progeny with differential phenotypes. In this study, whole-genome sequencing of isolated colonies identified allelic variants of two purine biosynthesis genes, purF and apt, encoding phosphoribosyltransferases that utilize a shared substrate. Genetic analyses determined that purF was essential for fitness, while apt was critical. Traditional and high-depth amplicon-sequencing analyses confirmed extensive intrapopulation genetic variation of purF and apt that resulted in viable strains bearing alleles with in-frame insertion duplications, deletions, or missense polymorphisms. Different purF and apt alleles were associated with various stress survival capabilities under several niche-relevant conditions and contributed to differential intracellular survival in an epithelial cell infection model. Amplicon sequencing revealed that intracellular survival selected for stress-fit purF and apt alleles, as did exposure to oxygen and hyperosmotic stress. Putative protein recognition direct repeat sequences were identified in purF and apt, and a DNA-protein affinity screen captured a predicted exonuclease that promoted the global spontaneous mutation rate. This work illustrates the adaptive properties of high-frequency genetic variation in two housekeeping genes, which influences C. jejuni survival under stress and promotes its success as a pathogen. IMPORTANCE: C. jejuni is an important cause of bacterial diarrheal illness. Bacterial populations have many strategies for stress survival, but phenotypic variation due to genetic diversity has a powerful advantage: no matter how swift the change in environment, a fraction of the population already expresses the survival trait. Nonclonality is thus increasingly viewed as a mechanism of population success. Our previous work identified prominent resistant/sensitive colonial variation in C. jejuni bacteria in response to hyperosmotic stress; in the work presented here, we attribute that to high-frequency genetic variation in two purine biosynthesis genes, purF and apt. We demonstrated selective pressure for nonlethal mutant alleles of both genes, showed that single-cell variants had the capacity to give rise to diverse purF and apt populations, and determined that stress exposure selected for desirable alleles. Thus, a novel C. jejuni adaptive strategy was identified, which was, unusually, reliant on prevalent genetic variation in two housekeeping genes.


Assuntos
Campylobacter jejuni/crescimento & desenvolvimento , Variação Genética , Redes e Vias Metabólicas/genética , Pentosiltransferases/genética , Purinas/biossíntese , Adaptação Biológica , Linhagem Celular , DNA Bacteriano/química , DNA Bacteriano/genética , Células Epiteliais/microbiologia , Genoma Bacteriano , Humanos , Viabilidade Microbiana , Análise de Sequência de DNA
13.
Mol Microbiol ; 96(1): 189-209, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25582441

RESUMO

Campylobacter jejuni is a leading cause of food-borne gastroenteritis in humans. It lives commensally in the gastrointestinal tract of animals, and tolerates variable conditions during transit/colonization of susceptible hosts. The C. jejuni CprRS two-component system contains an essential response regulator (CprR), and deletion of the cprS sensor kinase enhances biofilms. We sought to identify CprRS-regulated genes and better understand how the system affects survival. Expression from the cprR promoter was highest during logarithmic growth and dependent on CprS. CprR(D52A) did not support viability, indicating that CprR phosphorylation is essential despite the dispensability of CprS. We identified a GTAAAC consensus bound by the CprR C-terminus; the Asp52 residue of full-length CprR was required for binding, suggesting phosphorylation is required. Transcripts differing in expression in ΔcprS compared with wildtype (WT) contained a putative CprR binding site upstream of their promoter region and encoded htrA (periplasmic protease upstream of cprRS) and peb4 (SurA-like chaperone). Consistent with direct regulation, the CprR consensus in the htrA promoter was bound by CprR(CTD). Finally, ΔhtrA formed enhanced biofilms, and ΔcprS biofilms were suppressed by Mg(2+). CprRS is the first C. jejuni regulatory system shown to control genes related to the cell envelope, the first line of interaction between pathogen and changing environments.


Assuntos
Campylobacter jejuni/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Análise em Microsséries , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Óperon , Fenótipo , Fosforilação/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico
14.
J Biol Chem ; 290(6): 3622-38, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25505267

RESUMO

Peptidoglycan modifying carboxypeptidases (CPs) are important determinants of bacterial cell shape. Here, we report crystal structures of Csd4, a three-domain protein from the human gastric pathogen Helicobacter pylori. The catalytic zinc in Csd4 is coordinated by a rare His-Glu-Gln configuration that is conserved among most Csd4 homologs, which form a distinct subfamily of CPs. Substitution of the glutamine to histidine, the residue found in prototypical zinc carboxypeptidases, resulted in decreased enzyme activity and inhibition by phosphate. Expression of the histidine variant at the native locus in a H. pylori csd4 deletion strain did not restore the wild-type helical morphology. Biochemical assays show that Csd4 can cleave a tripeptide peptidoglycan substrate analog to release m-DAP. Structures of Csd4 with this substrate analog or product bound at the active site reveal determinants of peptidoglycan specificity and the mechanism to cleave an isopeptide bond to release m-DAP. Our data suggest that Csd4 is the archetype of a new CP subfamily with a domain scheme that differs from this large family of peptide-cleaving enzymes.


Assuntos
Proteínas de Bactérias/química , Carboxipeptidases/química , Glutamina/metabolismo , Helicobacter pylori/enzimologia , Zinco/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Glutamina/química , Glutamina/genética , Helicobacter pylori/citologia , Ligantes , Dados de Sequência Molecular , Mutação , Peptídeos/metabolismo , Peptidoglicano/metabolismo , Ligação Proteica
15.
PLoS One ; 9(8): e106063, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25166748

RESUMO

Campylobacter jejuni is a leading cause of foodbourne gastroenteritis, despite fragile behaviour under standard laboratory conditions. In the environment, C. jejuni may survive within biofilms, which can impart resident bacteria with enhanced stress tolerance compared to their planktonic counterparts. While C. jejuni forms biofilms in vitro and in the wild, it had not been confirmed that this lifestyle confers stress tolerance. Moreover, little is understood about molecular mechanisms of biofilm formation in this pathogen. We previously found that a ΔcprS mutant, which carries a deletion in the sensor kinase of the CprRS two-component system, forms enhanced biofilms. Biofilms were also enhanced by the bile salt deoxycholate and contained extracellular DNA. Through more in-depth analysis of ΔcprS and WT under conditions that promote or inhibit biofilms, we sought to further define this lifestyle for C. jejuni. Epistasis experiments with ΔcprS and flagellar mutations (ΔflhA, ΔpflA) suggested that initiation is mediated by flagellum-mediated adherence, a process which was kinetically enhanced by motility. Lysis was also observed, especially under biofilm-enhancing conditions. Microscopy suggested adherence was followed by release of eDNA, which was required for biofilm maturation. Importantly, inhibiting biofilm formation by removal of eDNA with DNase decreased stress tolerance. This work suggests the biofilm lifestyle provides C. jejuni with resilience that has not been apparent from observation of planktonic bacteria during routine laboratory culture, and provides a framework for subsequent molecular studies of C. jejuni biofilms.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Campylobacter jejuni/fisiologia , DNA Bacteriano/metabolismo , Flagelos/fisiologia , Aderência Bacteriana , Campylobacter jejuni/ultraestrutura , DNA Bacteriano/ultraestrutura , Epistasia Genética , Flagelos/ultraestrutura , Proteínas de Membrana/genética , Mutação , Plâncton/fisiologia , Estresse Fisiológico
16.
PLoS Pathog ; 10(7): e1004264, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25033044

RESUMO

Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr(-/-)), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr(-/-) mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr(-/-) mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4(-/-)/Sigirr(-/-) mice were largely unresponsive to infection by C. jejuni, whereas Tlr2(-/-)/Sigirr(-/-) mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr(-/-) mice as an exciting and relevant animal model for studying the pathogenesis and innate immune responses to C. jejuni.


Assuntos
Infecções por Campylobacter/imunologia , Campylobacter jejuni/imunologia , Gastroenterite/imunologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Cápsulas Bacterianas/imunologia , Infecções por Campylobacter/genética , Infecções por Campylobacter/patologia , Modelos Animais de Doenças , Gastroenterite/genética , Gastroenterite/microbiologia , Gastroenterite/patologia , Camundongos , Camundongos Knockout , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Transdução de Sinais/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
17.
PLoS One ; 9(4): e95084, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24751825

RESUMO

Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium.


Assuntos
Campylobacter jejuni/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Higromicina B/farmacologia , Mutagênese Insercional/genética , Nebramicina/análogos & derivados , Arilsulfatases/genética , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/crescimento & desenvolvimento , Deleção de Genes , Técnicas de Transferência de Genes , Genes Bacterianos , Teste de Complementação Genética , Vetores Genéticos/genética , Mutagênese Insercional/efeitos dos fármacos , Nebramicina/farmacologia
18.
J Biol Chem ; 289(12): 8007-18, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24394413

RESUMO

Despite the importance of Campylobacter jejuni as a pathogen, little is known about the fundamental aspects of its peptidoglycan (PG) structure and factors modulating its helical morphology. A PG dl-carboxypeptidase Pgp1 essential for maintenance of C. jejuni helical shape was recently identified. Bioinformatic analysis revealed the CJJ81176_0915 gene product as co-occurring with Pgp1 in several organisms. Deletion of cjj81176_0915 (renamed pgp2) resulted in straight morphology, representing the second C. jejuni gene affecting cell shape. The PG structure of a Δpgp2 mutant showed an increase in tetrapeptide-containing muropeptides and a complete absence of tripeptides, consistent with ld-carboxypeptidase activity, which was confirmed biochemically. PG analysis of a Δpgp1Δpgp2 double mutant demonstrated that Pgp2 activity is required to generate the tripeptide substrate for Pgp1. Loss of pgp2 affected several pathogenic properties; the deletion strain was defective for motility in semisolid agar, biofilm formation, and fluorescence on calcofluor white. Δpgp2 PG also caused decreased stimulation of the human nucleotide-binding oligomerization domain 1 (Nod1) proinflammatory mediator in comparison with wild type, as expected from the reduction in muropeptide tripeptides (the primary Nod1 agonist) in the mutant; however, these changes did not alter the ability of the Δpgp2 mutant strain to survive within human epithelial cells or to elicit secretion of IL-8 from epithelial cells after infection. The pgp2 mutant also showed significantly reduced fitness in a chick colonization model. Collectively, these analyses enhance our understanding of C. jejuni PG maturation and help to clarify how PG structure and cell shape impact pathogenic attributes.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/citologia , Campylobacter jejuni/enzimologia , Carboxipeptidases/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Biofilmes/crescimento & desenvolvimento , Campylobacter jejuni/patogenicidade , Campylobacter jejuni/fisiologia , Carboxipeptidases/genética , Linhagem Celular , Deleção de Genes , Humanos , Peptidoglicano/química , Peptidoglicano/metabolismo
19.
Curr Opin Microbiol ; 16(6): 767-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121030

RESUMO

Bacterial shape has always been hypothesized to play an important role in the biology of a species and in the ability of certain bacteria to influence human health. The recent discovery of peptidoglycan hydrolases that modulate shape has now allowed this hypothesis to be addressed directly. Genetic, biochemical, and phenotypic studies have found that changes in shape and underlying peptidoglycan structure influence many pathogenic attributes including surviving unfavorable conditions, predation, transmission, colonization, and host interactions. The diversity of bacterial shapes, niches, and lifestyles is also reflected in diverse mechanisms of hydrolase regulation, critical for maintaining peptidoglycan integrity and biological properties of the cell. Future studies will build on the current work described and further elucidate the intersection of peptidoglycan hydrolase activity, shape, and disease outcome.


Assuntos
Bactérias/citologia , Bactérias/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo
20.
J Bacteriol ; 194(22): 6116-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961853

RESUMO

The diarrheal pathogen Campylobacter jejuni and other gastrointestinal bacteria encounter changes in osmolarity in the environment, through exposure to food processing, and upon entering host organisms, where osmotic adaptation can be associated with virulence. In this study, growth profiles, transcriptomics, and phenotypic, mutant, and single-cell analyses were used to explore the effects of hyperosmotic stress exposure on C. jejuni. Increased growth inhibition correlated with increased osmotic concentration, with both ionic and nonionic stressors inhibiting growth at 0.620 total osmol liter(-1). C. jejuni adaptation to a range of osmotic stressors and concentrations was accompanied by severe filamentation in subpopulations, with microscopy indicating septum formation and phenotypic diversity between individual cells in a filament. Population heterogeneity was also exemplified by the bifurcation of colony morphology into small and large variants on salt stress plates. Flow cytometry of C. jejuni harboring green fluorescent protein (GFP) fused to the ATP synthase promoter likewise revealed bimodal subpopulations under hyperosmotic stress. We also identified frequent hyperosmotic stress-sensitive variants within the clonal wild-type population propagated on standard laboratory medium. Microarray analysis following hyperosmotic upshift revealed enhanced expression of heat shock genes and genes encoding enzymes for synthesis of potential osmoprotectants and cross-protective induction of oxidative stress genes. The capsule export gene kpsM was also upregulated, and an acapsular mutant was defective for growth under hyperosmotic stress. For C. jejuni, an organism lacking most conventional osmotic response factors, these data suggest an unusual hyperosmotic stress response, including likely "bet-hedging" survival strategies relying on the presence of stress-fit individuals in a heterogeneous population.


Assuntos
Campylobacter jejuni/fisiologia , Estresse Fisiológico/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Galinhas , Regulação Bacteriana da Expressão Gênica/fisiologia , Glucose/farmacologia , Humanos , Intestinos/microbiologia , Cloreto de Magnésio/farmacologia , Pressão Osmótica , Cloreto de Potássio/farmacologia , Cloreto de Sódio , Fatores de Tempo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA