Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 16(10): 16091-16108, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36174231

RESUMO

Bacterial biofilm formation is a huge problem in industry and medicine. Therefore, the discovery of anti-biofilm agents may hold great promise. Biofilm formation is usually a consequence of bacterial cell-cell communication, a process called quorum sensing (QS). CeO2 nanocrystals (NCs) have been established as haloperoxidase (HPO) mimics and ecologically beneficial biofilm inhibitors. They were suggested to interfere with QS, a mechanism termed quorum quenching (QQ), but their molecular mechanism remained elusive. We show that CeO2 NCs are effective QQ agents, inactivating QS signals by bromination. Catalytic bromination of 3-oxo-C12-AHL a QS signaling compound used by Pseudomonas aeruginosa, was detected in the presence of CeO2 NCs, bromide ions, and hydrogen peroxide. Brominated acyl-homoserine lactones (AHLs) no longer act as QS signals but were not detected in the bacterial cultures. Externally added brominated AHLs also disappeared in P. aeruginosa cultures within minutes of their addition, indicating that they are rapidly degraded by the bacteria. Moreover, we detected the catalytic bromination of 2-heptyl-1-hydroxyquinolin-4(1H)-one (HQNO), a multifunctional non-AHL QS signal from P. aeruginosa with antibacterial and algicidal properties controlling the expression of many virulence genes. Brominated HQNO was not degraded by the bacteria in vivo. The repression of the Pseudomonas quinolone signal (PQS) production and biofilm formation in P. aeruginosa through the catalytic formation of Br-HQNO on surfaces with coatings containing CeO2 enzyme mimics validates the non-toxic strategy for the development of anti-infectives.


Assuntos
Acil-Butirolactonas , Nanopartículas , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacologia , Peróxido de Hidrogênio/farmacologia , Brometos , Biofilmes , Percepção de Quorum , Pseudomonas aeruginosa , Bactérias/metabolismo , Antibacterianos/farmacologia
2.
Nanoscale ; 14(12): 4740-4752, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35266939

RESUMO

Marine organisms combat bacterial colonization by biohalogenation of signaling compounds that interfere with bacterial communication. These reactions are catalyzed by haloperoxidase enzymes, whose activity can be emulated by nanoceria using milli- and micromolar concentrations of Br- and H2O2. We show that the haloperoxidase-like activity of nanoceria can greatly be enhanced by Ln substitution in Ce1-xLnxO2-x/2. Non-agglomerated nanosized Ce1-xLnxO2-x/2 (Ln = Pr, Tb, particle size < 10 nm) was prepared mechanochemically from CeCl3 and Na2CO3 followed by short calcination. Lanthanide metals could be incorporated into the CeO2 host without solubility limit, as shown for Tb. The distribution of the Ln3+ defect sites in the CeO2 host structure was analyzed by electron spin resonance spectroscopy. Ce3+ and superoxide O2- species are present at surface sites. Their formation is promoted by increasing dopant concentration. Ce1-xLnxO2-x/2 was prepared in copious amounts by ball-milling. This energy-saving and residue-free method can be upscaled to industrial scale. The surface defect chemistry of Ce1-xLnxO2-x/2 was unravelled by vibrational spectroscopy. It is associated with the mechanochemical preparation and leads to enhanced catalytic activity. Although Ce0.9Pr0.1O1.95 had a lower BET surface area than pure CeO2, its catalytic activity, calibrated by oxidative bromination of phenol red, was much higher because the ζ-potential increased from 15 mV (for CeO2) to 30 mV (for Ce0.9Pr0.1O1.95). This facilitates adsorption of Br- in aqueous conditions and explains the high catalytic activity of the Ln-substituted CeO2. Ce1-xLnxO2-x/2 is an effective and "green" nanoparticle haloperoxidase mimic for antifouling applications, as no chemicals other than the ubiquitous Br- and H2O2 (generated in daylight) are required, and only natural metabolites are released into the environment.


Assuntos
Elementos da Série dos Lantanídeos , Adsorção , Catálise , Peróxido de Hidrogênio , Tamanho da Partícula
3.
Sci Rep ; 12(1): 3935, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273241

RESUMO

Preventing bacteria from adhering to material surfaces is an important technical problem and a major cause of infection. One of nature's defense strategies against bacterial colonization is based on the biohalogenation of signal substances that interfere with bacterial communication. Biohalogenation is catalyzed by haloperoxidases, a class of metal-dependent enzymes whose activity can be mimicked by ceria nanoparticles. Transparent CeO2/polycarbonate surfaces that prevent adhesion, proliferation, and spread of Pseudomonas aeruginosa PA14 were manufactured. Large amounts of monodisperse CeO2 nanoparticles were synthesized in segmented flow using a high-throughput microfluidic benchtop system using water/benzyl alcohol mixtures and oleylamine as capping agent. This reduced the reaction time for nanoceria by more than one order of magnitude compared to conventional batch methods. Ceria nanoparticles prepared by segmented flow showed high catalytic activity in halogenation reactions, which makes them highly efficient functional mimics of haloperoxidase enzymes. Haloperoxidases are used in nature by macroalgae to prevent formation of biofilms via halogenation of signaling compounds that interfere with bacterial cell-cell communication ("quorum sensing"). CeO2/polycarbonate nanocomposites were prepared by dip-coating plasma-treated polycarbonate panels in CeO2 dispersions. These showed a reduction in bacterial biofilm formation of up to 85% using P. aeruginosa PA14 as model organism. Besides biofilm formation, also the production of the virulence factor pyocyanin in is under control of the entire quorum sensing systems P. aeruginosa. CeO2/PC showed a decrease of up to 55% in pyocyanin production, whereas no effect on bacterial growth in liquid culture was observed. This indicates that CeO2 nanoparticles affect quorum sensing and inhibit biofilm formation in a non-biocidal manner.


Assuntos
Nanocompostos , Nanopartículas , Antibacterianos/farmacologia , Bactérias , Biofilmes , Pseudomonas aeruginosa , Piocianina , Percepção de Quorum , Fatores de Virulência
4.
Nanoscale ; 14(1): 86-98, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34897345

RESUMO

Highly transparent CeO2/polycarbonate surfaces were fabricated that prevent adhesion, proliferation, and the spread of bacteria. CeO2 nanoparticles with diameters of 10-15 nm and lengths of 100-200 nm for this application were prepared by oxidizing aqueous dispersions of Ce(OH)3 with H2O2 in the presence of nitrilotriacetic acid (NTA) as the capping agent. The surface-functionalized water-dispersible CeO2 nanorods showed high catalytic activity in the halogenation reactions, which makes them highly efficient functional mimics of haloperoxidases. These enzymes are used in nature to prevent the formation of biofilms through the halogenation of signaling compounds that interfere with bacterial cell-cell communication ("quorum sensing"). Bacteria-repellent CeO2/polycarbonate plates were prepared by dip-coating plasma-treated polycarbonate plates in aqueous CeO2 particle dispersions. The quasi-enzymatic activity of the CeO2 coating was demonstrated using phenol red enzyme assays. The monolayer coating of CeO2 nanorods (1.6 µg cm-2) and the bacteria repellent properties were demonstrated by atomic force microscopy, biofilm assays, and fluorescence measurements. The engineered polymer surfaces have the ability to repel biofilms as green antimicrobials on plastics, where H2O2 is present in humid environments such as automotive parts, greenhouses, or plastic containers for rainwater.


Assuntos
Peróxido de Hidrogênio , Pseudomonas aeruginosa , Biofilmes , Plásticos , Cimento de Policarboxilato
5.
Nanoscale ; 12(41): 21344-21358, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33074276

RESUMO

Preventing bacterial adhesion on materials surfaces is an important problem in marine, industrial, medical and environmental fields and a topic of major medical and societal importance. A defense strategy of marine organisms against bacterial colonization relies on the biohalogenation of signaling compounds that interfere with bacterial communication. These reactions are catalyzed by haloperoxidases, a class of metal-dependent enzymes, whose activity can be emulated by ceria nanoparticles. The enzyme-like activity of ceria was enhanced by a factor of 3 through bismuth substitution (Ce1-xBixO2-δ). The solubility of Bi3+ in CeO2 is confined to the range 0 < x < 0.25 under quasi-hydrothermal conditions. The Bi3+ cations are located close to the nanoparticle surface because their ionic radii are larger than those of the tetravalent Ce4+ ions. The synthesis of Ce1-xBixO2-δ (0 < x < 0.25) nanoparticles was upscaled to yields of ∼50 g. The halogenation activity of Ce1-xBixO2-δ was demonstrated with phenol red assays. The maximum activity for x ≈ 0.2 is related to the interplay of the ζ-potential of surface-engineered Ce1-xBixO2-δ nanoparticles and their BET surface area. Ce0.80Bi0.20O1.9 nanoparticles with optimized activity were incorporated in polyethersulfone beads, which are typical constituents of water filter membrane supports. Although Ce1-xBixO2-δ nanoparticles are not bactericidal on their own, naked Ce1-xBixO2-δ nanoparticles and polyethersulfone/Ce1-xBixO2-δ nanocomposites showed a strongly reduced bacterial coverage. We attribute the decreased adhesion of the Gram-negative soil bacterium Pseudomonas aeruginosa and of Phaeobacter gallaeciensis, a primary bacterial colonizer in marine biofilms, to the formation of halogenated signaling compounds. No biocides are needed, H2O2 (formed in daylight) and halide are the only substrates required. The haloperoxidase-like activity of Ce1-xBixO2-δ may be a promising starting point for the development of environmentally friendly, "green" nanocomposites, when the use of conventional biocides is prohibited.


Assuntos
Anti-Infecciosos , Cério , Nanocompostos , Peróxido de Hidrogênio , Rhodobacteraceae
6.
BMC Genomics ; 19(1): 854, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497380

RESUMO

BACKGROUND: Photorhabdus luminescens is an enteric bacterium, which lives in mutualistic association with soil nematodes and is highly pathogenic for a broad spectrum of insects. A complete genome sequence for the type strain P. luminescens subsp. laumondii TT01, which was originally isolated in Trinidad and Tobago, has been described earlier. Subsequently, a rifampicin resistant P. luminescens strain has been generated with superior possibilities for experimental characterization. This strain, which is widely used in research, was described as a spontaneous rifampicin resistant mutant of TT01 and is known as TT01-RifR. RESULTS: Unexpectedly, upon phenotypic comparison between the rifampicin resistant strain and its presumed parent TT01, major differences were found with respect to bioluminescence, pigmentation, biofilm formation, haemolysis as well as growth. Therefore, we renamed the strain TT01-RifR to DJC. To unravel the genomic basis of the observed differences, we generated a complete genome sequence for strain DJC using the PacBio long read technology. As strain DJC was supposed to be a spontaneous mutant, only few sequence differences were expected. In order to distinguish these from potential sequencing errors in the published TT01 genome, we re-sequenced a derivative of strain TT01 in parallel, also using the PacBio technology. The two TT01 genomes differed at only 30 positions. In contrast, the genome of strain DJC varied extensively from TT01, showing 13,000 point mutations, 330 frameshifts, and 220 strain-specific regions with a total length of more than 300 kb in each of the compared genomes. CONCLUSIONS: According to the major phenotypic and genotypic differences, the rifampicin resistant P. luminescens strain, now named strain DJC, has to be considered as an independent isolate rather than a derivative of strain TT01. Strains TT01 and DJC both belong to P. luminescens subsp. laumondii.


Assuntos
Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Genômica , Photorhabdus/genética , Rifampina/farmacologia , Antibacterianos/farmacologia , Sequência de Bases , Biofilmes/efeitos dos fármacos , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Mutação/genética , Fases de Leitura Aberta/genética , Fenótipo , Photorhabdus/efeitos dos fármacos , Photorhabdus/crescimento & desenvolvimento , Photorhabdus/isolamento & purificação , Prófagos/fisiologia , Análise de Sequência de DNA , Simbiose/efeitos dos fármacos , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA