Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 65, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539229

RESUMO

BACKGROUND: Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic bacteria that supply their metabolism with light energy harvested by bacteriochlorophyll-a-containing reaction centers. Despite their substantial contribution to bacterial biomass, microbial food webs, and carbon cycle, their phenology in freshwater lakes remains unknown. Hence, we investigated seasonal variations of AAP abundance and community composition biweekly across 3 years in a temperate, meso-oligotrophic freshwater lake. RESULTS: AAP bacteria displayed a clear seasonal trend with a spring maximum following the bloom of phytoplankton and a secondary maximum in autumn. As the AAP bacteria represent a highly diverse assemblage of species, we followed their seasonal succession using the amplicon sequencing of the pufM marker gene. To enhance the accuracy of the taxonomic assignment, we developed new pufM primers that generate longer amplicons and compiled the currently largest database of pufM genes, comprising 3633 reference sequences spanning all phyla known to contain AAP species. With this novel resource, we demonstrated that the majority of the species appeared during specific phases of the seasonal cycle, with less than 2% of AAP species detected during the whole year. AAP community presented an indigenous freshwater nature characterized by high resilience and heterogenic adaptations to varying conditions of the freshwater environment. CONCLUSIONS: Our findings highlight the substantial contribution of AAP bacteria to the carbon flow and ecological dynamics of lakes and unveil a recurrent and dynamic seasonal succession of the AAP community. By integrating this information with the indicator of primary production (Chlorophyll-a) and existing ecological models, we show that AAP bacteria play a pivotal role in the recycling of dissolved organic matter released during spring phytoplankton bloom. We suggest a potential role of AAP bacteria within the context of the PEG model and their consideration in further ecological models.


Assuntos
Lagos , Processos Fototróficos , Lagos/microbiologia , Bactérias/genética , Biomassa , Bactérias Aeróbias/genética , Bactérias Aeróbias/metabolismo , Fitoplâncton/genética
2.
Microb Ecol ; 86(3): 2161-2172, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37148309

RESUMO

Studies based on protein-coding genes are essential to describe the diversity within bacterial functional groups. In the case of aerobic anoxygenic phototrophic (AAP) bacteria, the pufM gene has been established as the genetic marker for this particular functional group, although available primers are known to have amplification biases. We review here the existing primers for pufM gene amplification, design new ones, and evaluate their phylogenetic coverage. We then use samples from contrasting marine environments to evaluate their performance. By comparing the taxonomic composition of communities retrieved with metagenomics and with different amplicon approaches, we show that the commonly used PCR primers are biased towards the Gammaproteobacteria phylum and some Alphaproteobacteria clades. The metagenomic approach, as well as the use of other combinations of the existing and newly designed primers, show that these groups are in fact less abundant than previously observed, and that a great proportion of pufM sequences are affiliated to uncultured representatives, particularly in the open ocean. Altogether, the framework developed here becomes a better alternative for future studies based on the pufM gene and, additionally, serves as a reference for primer evaluation of other functional genes.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Filogenia , Metagenômica , Proteínas de Bactérias/genética , Alphaproteobacteria/genética
3.
Environ Microbiol ; 24(5): 2222-2238, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35084095

RESUMO

The aerobic anoxygenic phototrophic (AAP) bacteria are common in most marine environments but their global diversity and biogeography remain poorly characterized. Here, we analyzed AAP communities across 113 globally-distributed surface ocean stations sampled during the Malaspina Expedition in the tropical and subtropical ocean. By means of amplicon sequencing of the pufM gene, a genetic marker for this functional group, we show that AAP communities along the surface ocean were mainly composed of members of the Halieaceae (Gammaproteobacteria), which were adapted to a large range of environmental conditions, and of different clades of the Alphaproteobacteria, which seemed to dominate under particular circumstances, such as in the oligotrophic gyres. AAP taxa were spatially structured within each of the studied oceans, with communities from adjacent stations sharing more taxonomic similarities. AAP communities were composed of a large pool of rare members and several habitat specialists. When compared to the surface ocean prokaryotic and picoeukaryotic communities, it appears that AAP communities display an idiosyncratic global biogeographical pattern, dominated by selection processes and less influenced by dispersal limitation. Our study contributes to the understanding of how AAP communities are distributed in the horizontal dimension and the mechanisms underlying their distribution across the global surface ocean.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Bactérias Aeróbias/genética , Oceanos e Mares , Filogenia , Água do Mar/microbiologia
4.
Sci Rep ; 10(1): 19773, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188261

RESUMO

Estimation of prokaryotic growth rates is critical to understand the ecological role and contribution of different microbes to marine biogeochemical cycles. However, there is a general lack of knowledge on what factors control the growth rates of different prokaryotic groups and how these vary between sites and along seasons at a given site. We carried out several manipulation experiments during the four astronomical seasons in the coastal NW Mediterranean in order to evaluate the impact of grazing, viral mortality, resource competition and light on the growth and loss rates of prokaryotes. Gross and net growth rates of different bacterioplankton groups targeted by group-specific CARD-FISH probes and infrared microscopy (for aerobic anoxygenic phototrophs, AAP), were calculated from changes in cell abundances. Maximal group-specific growth rates were achieved when both predation pressure and nutrient limitation were experimentally minimized, while only a minimal effect of viral pressure on growth rates was observed; nevertheless, the response to predation removal was more remarkable in winter, when the bacterial community was not subjected to nutrient limitation. Although all groups showed increases in their growth rates when resource competition as well as grazers and viral pressure were reduced, Alteromonadaceae consistently presented the highest rates in all seasons. The response to light availability was generally weaker than that to the other factors, but it was variable between seasons. In summer and spring, the growth rates of AAP were stimulated by light whereas the growth of the SAR11 clade (likely containing proteorhodopsin) was enhanced by light in all seasons. Overall, our results set thresholds on bacterioplankton group-specific growth and mortality rates and contribute to estimate the seasonally changing contribution of various bacterioplankton groups to the function of microbial communities. Our results also indicate that the least abundant groups display the highest growth rates, contributing to the recycling of organic matter to a much greater extent than what their abundances alone would predict.


Assuntos
Alteromonadaceae/efeitos da radiação , Raios Infravermelhos , Luz , Microbiota , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA