Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894969

RESUMO

Over the past 20 years, the use of pluripotent stem cells to mimic the complexities of the human neuromuscular junction has received much attention. Deciphering the key mechanisms underlying the establishment and maturation of this complex synapse has been driven by the dual goals of addressing developmental questions and gaining insight into neuromuscular disorders. This review aims to summarise the evolution and sophistication of in vitro neuromuscular junction models developed from the first differentiation of human embryonic stem cells into motor neurons to recent neuromuscular organoids. We also discuss the potential offered by these models to decipher different neuromuscular diseases characterised by defects in the presynaptic compartment, the neuromuscular junction, and the postsynaptic compartment. Finally, we discuss the emerging field that considers the use of these techniques in drug screening assay and the challenges they will face in the future.


Assuntos
Doenças Neuromusculares , Células-Tronco Pluripotentes , Humanos , Junção Neuromuscular , Neurônios Motores/fisiologia , Sinapses
2.
Curr Biol ; 33(1): 122-133.e4, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36565699

RESUMO

Microtubule self-repair has been studied both in vitro and in vivo as an underlying mechanism of microtubule stability. The turnover of tubulin dimers along the microtubule has challenged the pre-existing dogma that only growing ends are dynamic. However, although there is clear evidence of tubulin incorporation into the shaft of polymerized microtubules in vitro, the possibility of such events occurring in living cells remains uncertain. In this study, we investigated this possibility by microinjecting purified tubulin dimers labeled with a red fluorophore into the cytoplasm of cells expressing GFP-tubulin. We observed the appearance of red dots along the pre-existing green microtubule within minutes. We found that the fluorescence intensities of these red dots were inversely correlated with the green signal, suggesting that the red dimers were incorporated into the microtubules and replaced the pre-existing green dimers. Lateral distance from the microtubule center was similar to that in incorporation sites and in growing ends. The saturation of the size and spatial frequency of incorporations as a function of injected tubulin concentration and post-injection delay suggested that the injected dimers incorporated into a finite number of damaged sites. By our low estimate, within a few minutes of the injections, free dimers incorporated into major repair sites every 70 µm of microtubules. Finally, we mapped the location of these sites in micropatterned cells and found that they were more concentrated in regions where the actin filament network was less dense and where microtubules exhibited greater lateral fluctuations.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Citoplasma/metabolismo , Polímeros/metabolismo , Citoesqueleto de Actina/metabolismo , Guanosina Trifosfato/metabolismo
3.
Dev Cell ; 57(4): 466-479.e6, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35231427

RESUMO

The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.


Assuntos
Citoplasma/metabolismo , Microtúbulos/metabolismo , Polimerização , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Núcleo Celular/metabolismo , Interfase/fisiologia , Fuso Acromático/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L452-L458, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913645

RESUMO

Airway smooth muscle (ASM) is continuously strained during breathing at tidal volume. Whether this tidal strain influences the magnitude of the bronchodilator response to a deep inspiration (DI) is not clearly defined. The present in vitro study examines the effect of tidal strain on the bronchodilator effect of DIs. ASM strips from sheep tracheas were mounted in organ baths and then subjected to stretches (30% strain), simulating DIs at varying time intervals. In between simulated DIs, the strips were either held at a fixed length (isometric) or oscillated continuously by 6% (length oscillations) to simulate tidal strain. The contractile state of the strips was also controlled by adding either methacholine or isoproterenol to activate or relax ASM, respectively. Although the time-dependent gain in force caused by methacholine was attenuated by length oscillations, part of the acquired force in the oscillating condition was preserved postsimulated DIs, which was not the case in the isometric condition. Consequently, the bronchodilator effect of simulated DIs (i.e., the decline in force postsimulated versus presimulated DIs) was attenuated in oscillating versus isometric conditions. These findings suggest that an ASM operating in a dynamic environment acquired adaptations that make it refractory to the decline in contractility inflicted by a larger strain simulating a DI.


Assuntos
Adaptação Fisiológica , Broncodilatadores/metabolismo , Inalação/fisiologia , Músculo Liso/fisiologia , Traqueia/fisiologia , Animais , Elasticidade , Ovinos , Estresse Mecânico
5.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L442-L451, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31850799

RESUMO

Force adaptation of airway smooth muscle (ASM) is a process whereby the presence of tone (i.e., a sustained contraction) increases the contractile capacity. For example, tone has been shown to increase airway responsiveness in both healthy mice and humans. The goal of the present study is to elucidate the underlying molecular mechanisms. The maximal force generated by mouse tracheas was measured in response to 10-4 M of methacholine following a 30-min period with or without tone elicited by the EC30 of methacholine. To confirm the occurrence of force adaptation at the cellular level, traction force generated by cultured human ASM cells was also measured following a similar protocol. Different pharmacological inhibitors were used to investigate the role of Rho-associated coiled-coil containing protein kinase (ROCK), protein kinase C (PKC), myosin light chain kinase (MLCK), and actin polymerization in force adaptation. The phosphorylation level of the regulatory light chain (RLC) of myosin, the amount of actin filaments, and the activation level of the actin-severing protein cofilin were also quantified. Although ROCK, PKC, MLCK, and RLC phosphorylation was not implicated, force adaptation was prevented by inhibiting actin polymerization. Interestingly, the presence of tone blocked the activation of cofilin in addition to increasing the amount of actin filaments to a maximal level. We conclude that actin filamentogenesis induced by tone, resulting from both actin polymerization and the prevention of cofilin-mediated actin cleavage, is the main molecular mechanism underlying force adaptation.


Assuntos
Citoesqueleto de Actina/metabolismo , Contração Muscular/fisiologia , Tono Muscular/fisiologia , Músculo Liso/fisiologia , Traqueia/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Células Cultivadas , Humanos , Masculino , Camundongos Endogâmicos C57BL , Cadeias Leves de Miosina/metabolismo , Fosforilação , Polimerização , Proteína Quinase C/metabolismo , Traqueia/enzimologia , Quinases Associadas a rho/metabolismo
6.
J Appl Physiol (1985) ; 127(6): 1528-1538, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545157

RESUMO

The shortening of airway smooth muscle (ASM) is greatly affected by time. This is because stimuli affecting ASM shortening, such as bronchoactive molecules or the strain inflicted by breathing maneuvers, not only alter quick biochemical processes regulating contraction but also slower processes that allow ASM to adapt to an ever-changing length. Little attention has been given to the effect of time on ASM shortening. The present study investigates the effect of changing the time interval between simulated deep inspirations (DIs) on ASM shortening and its responsiveness to simulated DIs. Excised tracheal strips from sheep were mounted in organ baths and either activated with methacholine or relaxed with isoproterenol. They were then subjected to simulated DIs by imposing swings in distending stress, emulating a transmural pressure from 5 to 30 cmH2O. The simulated DIs were intercalated by 2, 5, 10, or 30 min. In between simulated DIs, the distending stress was either fixed or oscillating to simulate tidal breathing. The results show that although shortening was increased by prolonging the interval between simulated DIs, the bronchodilator effect of simulated DIs (i.e., the elongation of the strip post- vs. pre-DI) was not affected, and the rate of re-shortening post-simulated DIs was decreased. As the frequency with which DIs are taken increases upon bronchoconstriction, our results may be relevant to typical alterations observed in asthma, such as an increased rate of re-narrowing post-DI.NEW & NOTEWORTHY The frequency with which patients with asthma take deep inspirations (DIs) increases during bronchoconstriction. This in vitro study investigated the effect of changing the time interval between simulated DIs on airway smooth muscle shortening. The results demonstrated that decreasing the interval between simulated DIs not only decreases shortening, which may be protective against excessive airway narrowing, but also increases the rate of re-shortening post-simulated DIs, which may contribute to the increased rate of re-narrowing post-DI observed in asthma.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Brônquios/fisiologia , Broncoconstrição/fisiologia , Músculo Liso/fisiologia , Ovinos/fisiologia , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Asma/fisiopatologia , Brônquios/efeitos dos fármacos , Broncoconstrição/efeitos dos fármacos , Broncoconstritores/farmacologia , Broncodilatadores/farmacologia , Feminino , Inalação/efeitos dos fármacos , Isoproterenol/farmacologia , Masculino , Cloreto de Metacolina/farmacologia , Músculo Liso/efeitos dos fármacos , Traqueia/efeitos dos fármacos , Traqueia/fisiopatologia
7.
Respir Res ; 19(1): 131, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970083

RESUMO

BACKGROUND: Cigarette smoke exposure can affect pulmonary lipid homeostasis and cause a progressive increase in pulmonary antibodies against oxidized low-density lipoproteins (OxLDL). Similarly, increased anti-OxLDL antibodies are observed in atherosclerosis, a pathology also tightly associated with smoking and lipid homeostasis disruption. Several immunization strategies against oxidized lipid species to help with their clearance have been shown to reduce the formation of atherosclerotic lesions. Since oxidized lipids are generated during cigarette smoke exposure, we investigated the impact of a prophylactic immunization protocol against OxLDL on the pulmonary effects of cigarette smoke exposure in mice. METHODS: Mice were immunized systemically with a mixture of human OxLDL (antigen source) and AddaVax (adjuvant) or PBS alone prior to the initiation of acute (2 week) or sub-chronic (8 weeks) cigarette smoke exposure protocols. Anti-OxLDL antibodies were measured in the bronchoalveolar lavage (BAL) fluid and serum by direct ELISA. Pulmonary impacts of cigarette smoke exposure and OxLDL immunization were assessed by measuring BAL inflammatory cells, lung functions, and changes in lung structure and gene levels of matrix/matrix-related genes. RESULTS: Immunization to OxLDL led to a marked increase in circulating and pulmonary antibodies against OxLDL that persisted during cigarette smoke exposure. OxLDL immunization did not exacerbate or reduce the inflammatory response following acute or sub-chronic exposure to cigarette smoke. OxLDL immunization alone had effects similar to cigarette smoke exposure on lung functions but OxLDL immunization and cigarette smoke exposure had no additive effects on these parameters. No obvious changes in lung histology, airspace or levels of matrix and matrix-related genes were caused by OxLDL immunization compared to vehicle treatment. CONCLUSIONS: Overall, this study shows for the first time that a prophylactic immunization protocol against OxLDL can potentially have detrimental effects lung functions, without having additive effects over cigarette smoke exposure. This work sheds light on a complex dynamic between anti-OxLDL antibodies and the pulmonary response to cigarette smoke exposure.


Assuntos
Fumar Cigarros/efeitos adversos , Fumar Cigarros/imunologia , Lipoproteínas LDL/imunologia , Transtornos Respiratórios/imunologia , Transtornos Respiratórios/prevenção & controle , Fumaça/efeitos adversos , Administração por Inalação , Animais , Feminino , Humanos , Imunização , Lipoproteínas LDL/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Transtornos Respiratórios/induzido quimicamente
8.
J Vis Exp ; (137)2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30059019

RESUMO

Air volume changes created by a conscious subject breathing spontaneously within a body box are at the basis of plethysmography, a technique used to non-invasively assess some features of the respiratory function in humans as well as in laboratory animals. The present article focuses on the application of the double-chamber plethysmography (DCP) in small animals. It provides background information on the methodology as well as a detailed step-by-step procedure to successfully assess respiratory function in conscious, spontaneously breathing animals in a non-invasive manner. The DCP can be used to monitor the respiratory function of multiple animals in parallel, as well as to identify changes induced by aerosolized substances over a chosen time period and in a repeated manner. Experiments on control and allergic mice are used herein to demonstrate the utility of the technique, explain the associated outcome parameters, as well as to discuss the related advantages and shortcomings. Overall, the DCP provides valid and theoretically sound readouts that can be trusted to evaluate the respiratory function of conscious small animals both at baseline and after challenges with aerosolized substances.


Assuntos
Pletismografia/métodos , Respiração , Animais , Estado de Consciência , Camundongos
9.
J Appl Physiol (1985) ; 124(6): 1483-1490, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29470147

RESUMO

It is suggested that the frequent strain the airways undergo in asthma because of repeated airway smooth muscle (ASM)-mediated constrictions contributes to airway wall remodeling. However, the effects of repeated constrictions on airway remodeling, as well as the ensuing impact of this presumptive remodeling on respiratory mechanics, have never been investigated in subjects without asthma. In this study, we set out to determine whether repeated constrictions lead to features that are reminiscent of asthma in mice without asthma. BALB/c mice were subjected to a 30-min constriction elicited by aerosolized methacholine every other day over 6 wk. Forty-eight hours after the last constriction, the mechanics of the respiratory system was evaluated at baseline and in response to incremental doses of nebulized methacholine with the flexiVent. The whole-lung lavages, the tracheas, and the lungs were also collected to evaluate inflammation, the contractile capacity of ASM, and the structural components of the airway wall, respectively. The resistance and the compliance of the respiratory system, as well as the Newtonian resistance and the resistive and elastic properties of the lung tissue, were not affected by repeated constrictions, both at baseline and in response to methacholine. All the other examined features also remained unaltered, except the number of goblet cells in the epithelium and the number of macrophages in the whole-lung lavages, which both increased with repeated constrictions. This study demonstrates that, despite causing goblet cell hyperplasia and a mild macrophagic inflammation, repeated constrictions with methacholine do not lead to structural changes that adversely impact the physiology. NEW & NOTEWORTHY Repeated airway constrictions led to signs of remodeling that are typically observed in asthma, which neither altered respiratory mechanics nor the contractile capacity of airway smooth muscle. These findings shed light on a debate between those claiming that constrictions induce remodeling and those convinced that methacholine challenges are harmless. Insofar as our results with mice relate to humans, the findings indicate that repeated challenges with methacholine can be performed safely.


Assuntos
Remodelação das Vias Aéreas , Broncoconstrição , Animais , Feminino , Inflamação , Cloreto de Metacolina , Camundongos Endogâmicos BALB C , Músculo Liso/fisiologia
10.
Can J Physiol Pharmacol ; 96(5): 433-441, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29414243

RESUMO

The mechanisms whereby anticholinergics improve asthma outcomes, such as lung function, symptoms, and rate of exacerbation, can be numerous. The most obvious is by affecting the contraction of airway smooth muscle (ASM). The acetylcholine released from the cholinergic nerves is the most important bronchoconstrictor that sets the baseline degree of contractile activation of ASM in healthy individuals. Although the degree of ASM's contractile activation can also be fine-tuned by a plethora of other bronchoconstrictors and bronchodilators in asthma, blocking the ceaseless effect of acetylcholine on ASM by anticholinergics reduces, at any given moment, the overall degree of contractile activation. Because the relationships that exist between the degree of contractile activation, ASM force, ASM shortening, airway narrowing, airflow resistance, and respiratory resistance are not linear, small decreases in the contractile activation of ASM can be greatly amplified and thus translate into important benefits to a patient's well-being. Plus, many inflammatory and remodeling features that are often found in asthmatic lungs synergize with the contractile activation of ASM to increase respiratory resistance. This review recalls that the proven effectiveness of anticholinergics in the treatment of asthma could be merely attributed to a small reduction in the contractile activation of ASM.


Assuntos
Asma/tratamento farmacológico , Antagonistas Colinérgicos/farmacologia , Animais , Asma/fisiopatologia , Antagonistas Colinérgicos/uso terapêutico , Humanos , Contração Muscular/efeitos dos fármacos , Respiração/efeitos dos fármacos
11.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L348-L357, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27941076

RESUMO

Force adaptation, a process whereby sustained spasmogenic activation (viz., tone) of airway smooth muscle (ASM) increases its contractile capacity, has been reported in isolated ASM tissues in vitro, as well as in mice in vivo. The objective of the present study was to assess the effect of tone on airway responsiveness in humans. Ten healthy volunteers underwent methacholine challenge on two occasions. One challenge consisted of six serial doses of saline followed by a single high dose of methacholine. The other consisted of six low doses of methacholine 5 min apart followed by a higher dose. The cumulative dose was identical for both challenges. After both methacholine challenges, subjects took a deep inspiration (DI) to total lung capacity as another way to probe ASM mechanics. Responses to methacholine and the DI were measured using a multifrequency forced oscillation technique. Compared with a single high dose, the challenge preceded by tone led to an elevated response measured by respiratory system resistance (Rrs) and reactance at 5 Hz. However, there was no difference in the increase in Rrs at 19 Hz, suggesting a predominant effect on smaller airways. Increased tone also reduced the efficacy of DI, measured by an attenuated maximal dilation during the DI and an increased renarrowing post-DI. We conclude that ASM tone increases small airway responsiveness to inhaled methacholine and reduces the effectiveness of DI in healthy humans. This suggests that force adaptation may contribute to airway hyperresponsiveness and the reduced bronchodilatory effect of DI in asthma.


Assuntos
Saúde , Pulmão/fisiopatologia , Tono Muscular , Músculo Liso/fisiopatologia , Hipersensibilidade Respiratória/fisiopatologia , Adulto , Brônquios/efeitos dos fármacos , Feminino , Humanos , Inalação , Masculino , Cloreto de Metacolina/farmacologia , Tono Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Oscilometria , Mecânica Respiratória/efeitos dos fármacos , Espirometria , Adulto Jovem
12.
Respir Physiol Neurobiol ; 229: 51-8, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27095271

RESUMO

Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation.


Assuntos
Brônquios/fisiologia , Músculo Liso/fisiologia , Idoso , Fenômenos Biomecânicos , Brônquios/efeitos dos fármacos , Brônquios/patologia , Brônquios/cirurgia , Broncoconstritores/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Técnicas In Vitro , Medidas de Volume Pulmonar , Masculino , Cloreto de Metacolina/farmacologia , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/patologia , Músculo Liso/cirurgia , Neoplasias/cirurgia , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA