Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Microbiol Spectr ; 11(4): e0119023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37306579

RESUMO

The continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made it challenging to develop broad-spectrum prophylactic vaccines and therapeutic antibodies. Here, we have identified a broad-spectrum neutralizing antibody and its highly conserved epitope in the receptor-binding domain (RBD) of the spike protein (S) S1 subunit of SARS-CoV-2. First, nine monoclonal antibodies (MAbs) against the RBD or S1 were generated; of these, one RBD-specific MAb, 22.9-1, was selected for its broad RBD-binding abilities and neutralizing activities against SARS-CoV-2 variants. An epitope of 22.9-1 was fine-mapped with overlapping and truncated peptide fusion proteins. The core sequence of the epitope, 405D(N)EVR(S)QIAPGQ414, was identified on the internal surface of the up-state RBD. The epitope was conserved in nearly all variants of concern of SARS-CoV-2. MAb 22.9-1 and its novel epitope could be beneficial for research on broad-spectrum prophylactic vaccines and therapeutic antibody drugs. IMPORTANCE The continuous emergence of new variants of SARS-CoV-2 has caused great challenge in vaccine design and therapeutic antibody development. In this study, we selected a broad-spectrum neutralizing mouse monoclonal antibody which recognized a conserved linear B-cell epitope located on the internal surface of RBD. This MAb could neutralize all variants until now. The epitope was conserved in all variants. This work provides new insights in developing broad-spectrum prophylactic vaccines and therapeutic antibodies.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Animais , Camundongos , Epitopos/genética , Anticorpos Antivirais , SARS-CoV-2 , Anticorpos Neutralizantes
2.
J Virol ; 97(2): e0161122, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779763

RESUMO

Identification of bona fide functional receptors and elucidation of the mechanism of receptor-mediated virus entry are important to reveal targets for developing therapeutics against rabies virus (RABV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our previous studies suggest that metabotropic glutamate receptor subtype 2 (mGluR2) functions as an entry receptor for RABV in vitro, and is an important internalization factor for SARS-CoV-2 in vitro and in vivo. Here, we demonstrate that mGluR2 facilitates RABV internalization in vitro and infection in vivo. We found that transferrin receptor 1 (TfR1) interacts with mGluR2 and internalizes with mGluR2 and RABV in the same clathrin-coated pit. Knockdown of TfR1 blocks agonist-triggered internalization of mGluR2. Importantly, TfR1 also interacts with the SARS-CoV-2 spike protein and is important for SARS-CoV-2 internalization. Our findings identify a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry, and reveal TfR1 as a potential target for therapeutics against RABV and SARS-CoV-2. IMPORTANCE We previously found that metabotropic glutamate receptor subtype 2 (mGluR2) is an entry receptor for RABV in vitro, and an important internalization factor for SARS-CoV-2 in vitro and in vivo. However, whether mGluR2 is required for RABV infection in vivo was unknown. In addition, how mGluR2 mediates the internalization of RABV and SARS-CoV-2 needed to be resolved. Here, we found that mGluR2 gene knockout mice survived a lethal challenge with RABV. To our knowledge, mGluR2 is the first host factor to be definitively shown to play an important role in RABV street virus infection in vivo. We further found that transferrin receptor protein 1 (TfR1) directly interacts and cooperates with mGluR2 to regulate the endocytosis of RABV and SARS-CoV-2. Our study identifies a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry and opens a new door for the development of therapeutics against RABV and SARS-CoV-2.


Assuntos
COVID-19 , Vírus da Raiva , Receptores de Glutamato Metabotrópico , Receptores da Transferrina , SARS-CoV-2 , Internalização do Vírus , Animais , Humanos , Camundongos , Raiva/metabolismo , Vírus da Raiva/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores da Transferrina/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
J Virol ; 97(2): e0161222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779762

RESUMO

Rabies virus (RABV) is a prototypical neurotropic virus that causes rabies in human and animals with an almost 100% mortality rate. Once RABV enters the central nervous system, no treatment is proven to prevent death. RABV glycoprotein (G) interacts with cell surface receptors and then enters cells via clathrin-mediated endocytosis (CME); however, the key host factors involved remain largely unknown. Here, we identified transferrin receptor 1 (TfR1), a classic receptor that undergoes CME, as an entry factor for RABV. TfR1 interacts with RABV G and is involved in the endocytosis of RABV. An antibody against TfR1 or the TfR1 ectodomain soluble protein significantly blocked RABV infection in HEK293 cells, N2a cells, and mouse primary neuronal cells. We further found that the endocytosis of TfR1 is coupled with the endocytosis of RABV and that TfR1 and RABV are transported to early and late endosomes. Our results suggest that RABV hijacks the transport pathway of TfR1 for entry, thereby deepening our understanding of the entry mechanism of RABV. IMPORTANCE For most viruses, cell entry involves engagement with many distinct plasma membrane components, each of which is essential. After binding to its specific receptor(s), rabies virus (RABV) enters host cells through the process of clathrin-mediated endocytosis. However, whether the receptor-dependent clathrin-mediated endocytosis of RABV requires other plasma membrane components remain largely unknown. Here, we demonstrate that transferrin receptor 1 (TfR1) is a functional entry factor for RABV infection. The endocytosis of RABV is coupled with the endocytosis of TfR1. Our results indicate that RABV hijacks the transport pathway of TfR1 for entry, which deepens our understanding of the entry mechanism of RABV.


Assuntos
Vírus da Raiva , Raiva , Receptores da Transferrina , Internalização do Vírus , Animais , Humanos , Camundongos , Clatrina/metabolismo , Células HEK293 , Raiva/metabolismo , Vírus da Raiva/metabolismo , Receptores da Transferrina/metabolismo , Linhagem Celular , Endocitose
5.
Vet Microbiol ; 271: 109491, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714529

RESUMO

Viral infectious pathogens, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, can cause extremely high infection rates and mortality in humans. Therefore, it is urgent to develop an effective vaccine against coronavirus and influenza virus infection. Herein, we used the influenza virus as a vector to express the SARS-CoV-2 spike receptor-binding domain (RBD) and hemagglutinin-esterase-fusion (HEF) protein of the influenza C virus. We then evaluated the feasibility and effectiveness of this design strategy through experiments in vitro and in vivo. The results showed that the chimeric viruses could stably express the HEF protein and the SARS-CoV-2 spike RBD at a high level. BALB/c mice, infected with the chimeric virus, exhibited mild clinical symptoms, yet produced high specific antibody levels against RBD and HEF, including neutralizing antibodies. Importantly, high neutralizing antibodies could be retained in the sera of mice for at least 20 weeks. Altogether, our data provided a new strategy for developing safe and effective COVID-19 and influenza virus vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas contra Influenza , Orthomyxoviridae , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
6.
Virol Sin ; 37(2): 248-255, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35234625

RESUMO

Severe acute respiratory syndrome (SARS) is a highly contagious zoonotic disease caused by SARS coronavirus (SARS-CoV). Since its outbreak in Guangdong Province of China in 2002, SARS has caused 8096 infections and 774 deaths by December 31st, 2003. Although there have been no more SARS cases reported in human populations since 2004, the recent emergence of a novel coronavirus disease (COVID-19) indicates the potential of the recurrence of SARS and other coronavirus disease among humans. Thus, developing a rapid response SARS vaccine to provide protection for human populations is still needed. Spike (S) protein of SARS-CoV can induce neutralizing antibodies, which is a pivotal immunogenic antigen for vaccine development. Here we constructed a recombinant chimeric vesicular stomatitis virus (VSV) VSVΔG-SARS, in which the glycoprotein (G) gene is replaced with the SARS-CoV S gene. VSVΔG-SARS maintains the bullet-like shape of the native VSV, with the heterogeneous S protein incorporated into its surface instead of G protein. The results of safety trials revealed that VSVΔG-SARS is safe and effective in mice at a dose of 1 â€‹× â€‹106 TCID50. More importantly, only a single-dose immunization of 2 â€‹× â€‹107 TCID50 can provide high-level neutralizing antibodies and robust T cell responses to non-human primate animal models. Thus, our data indicate that VSVΔG-SARS can be used as a rapid response vaccine candidate. Our study on the recombinant VSV-vectored SARS-CoV vaccines can accumulate experience and provide a foundation for the new coronavirus disease in the future.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunização , Imunogenicidade da Vacina , Macaca mulatta , Camundongos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Glicoproteína da Espícula de Coronavírus , Vacinas Sintéticas/genética , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/metabolismo
7.
PLoS Pathog ; 18(2): e1010343, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176124

RESUMO

The continuous emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2) variants and the increasing number of breakthrough infection cases among vaccinated people support the urgent need for research and development of antiviral drugs. Viral entry is an intriguing target for antiviral drug development. We found that diltiazem, a blocker of the L-type calcium channel Cav1.2 pore-forming subunit (Cav1.2 α1c) and an FDA-approved drug, inhibits the binding and internalization of SARS-CoV-2, and decreases SARS-CoV-2 infection in cells and mouse lung. Cav1.2 α1c interacts with SARS-CoV-2 spike protein and ACE2, and affects the attachment and internalization of SARS-CoV-2. Our finding suggests that diltiazem has potential as a drug against SARS-CoV-2 infection and that Cav1.2 α1c is a promising target for antiviral drug development for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Diltiazem/farmacologia , Pulmão/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , COVID-19/patologia , COVID-19/virologia , Células Cultivadas , Chlorocebus aethiops , Diltiazem/uso terapêutico , Modelos Animais de Doenças , Feminino , Células HEK293 , Células HeLa , Humanos , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/fisiologia , Células Vero , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
8.
mBio ; 13(1): e0244321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012335

RESUMO

Loss of the furin cleavage motif in the SARS-CoV-2 spike protein reduces the virulence and transmission of SARS-CoV-2, suggesting that furin is an attractive antiviral drug target. However, lack of understanding of the regulation of furin activity has largely limited the development of furin-based therapeutic strategies. Here, we find that alpha-soluble NSF attachment protein (α-SNAP), an indispensable component of vesicle trafficking machinery, inhibits the cleavage of SARS-CoV-2 spike protein and other furin-dependent virus glycoproteins. SARS-CoV-2 infection increases the expression of α-SNAP, and overexpression of α-SNAP reduces SARS-CoV-2 infection in cells. We further reveal that α-SNAP is an interferon-upregulated furin inhibitor that inhibits furin function by interacting with its P domain. Our study demonstrates that α-SNAP, in addition to its role in vesicle trafficking, plays an important role in the host defense against furin-dependent virus infection and therefore could be a target for the development of therapeutic options for COVID-19. IMPORTANCE Some key mutations of SARS-CoV-2 spike protein, such as D614G and P681R mutations, increase the transmission or pathogenicity by enhancing the cleavage efficacy of spike protein by furin. Loss of the furin cleavage motif of SARS-CoV-2 spike protein reduces the virulence and transmission, suggesting that furin is an attractive antiviral drug target. However, lack of understanding of the regulation of furin activity has largely limited the development of furin-based therapeutic strategies. Here, we found that in addition to its canonical role in vesicle trafficking, alpha-soluble NSF attachment protein (α-SNAP) plays an important role in the host defense against furin-dependent virus infection. we identified that α-SNAP is a novel interferon-upregulated furin inhibitor and inhibits the cleavage of SARS-CoV-2 spike protein and other furin-dependent virus glycoproteins by interacting with P domain of furin. Our study demonstrates that α-SNAP could be a target for the development of therapeutic options for COVID-19.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Furina/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Interferons/metabolismo , Proteínas de Transporte , Antivirais , Glicoproteínas/metabolismo
9.
Cell Discov ; 7(1): 119, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34903715

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses angiotensin-converting enzyme 2 (ACE2) as a binding receptor to enter cells via clathrin-mediated endocytosis (CME). However, receptors involved in other steps of SARS-CoV-2 infection remain largely unknown. Here, we found that metabotropic glutamate receptor subtype 2 (mGluR2) is an internalization factor for SARS-CoV-2. Our results show that mGluR2 directly interacts with the SARS-CoV-2 spike protein and that knockdown of mGluR2 decreases internalization of SARS-CoV-2 but not cell binding. Further, mGluR2 is uncovered to cooperate with ACE2 to facilitate SARS-CoV-2 internalization through CME and mGluR2 knockout in mice abolished SARS-CoV-2 infection in the nasal turbinates and significantly reduced viral infection in the lungs. Notably, mGluR2 is also important for SARS-CoV spike protein- and Middle East respiratory syndrome coronavirus spike protein-mediated internalization. Thus, our study identifies a novel internalization factor used by SARS-CoV-2 and opens a new door for antiviral development against coronavirus infection.

12.
mBio ; 12(4): e0101721, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34281396

RESUMO

Virus-host interactions are complicated processes, and multiple cellular proteins promote or inhibit viral replication through different mechanisms. Recent progress has implicated circular RNAs (circRNAs) in cancer biology and progression; however, the role of circRNAs in viral infection remains largely unclear. Here, we detected 11,620 circRNAs in A549 cells and found that 411 of them were differentially expressed in influenza virus-infected A549 cells. We characterized a novel intronic circRNA, AIVR, that was upregulated in influenza virus-infected A549 cells and found that silencing of AIVR significantly promoted influenza virus replication in A549 cells. We further found that AIVR predominantly localizes in the cytoplasm and works as a microRNA (miRNA) sponge. One of the miRNAs absorbed by AIVR binds the mRNA of CREBBP, which is an important component of the large nucleoprotein complex interferon beta (IFN-ß) enhanceosome that accelerates IFN-ß production. AIVR overexpression significantly increased the mRNA and protein levels of IFN-ß in the influenza virus-infected A549 cells. Therefore, the upregulation of AIVR is a cellular antiviral strategy, with AIVR exerting its antiviral effect by absorbing miRNA and promoting the expression of CREBBP to facilitate IFN-ß production. Our study provides new insights into the roles of circRNAs in the cellular innate antiviral response. IMPORTANCE Circular RNAs (circRNAs) are new members of the long noncoding RNA families and have been identified in a variety of organisms, including plants, animals, and humans. Accumulating data indicate that circRNAs perform multiple functions in a variety of cellular processes associated with human diseases, such as Alzheimer's disease and cancer; however, the roles of circRNAs in virus infection have been largely uninvestigated. In this study, we investigated the cellular circRNA response upon influenza virus infection and found that 411 circRNAs were differentially expressed in the virus-infected cells. We identified a novel human intronic circRNA (we named AIVR) that antagonizes influenza virus replication. Upregulated circRNA AIVR absorbs an miRNA that binds the mRNA of CREBBP, leading to an increase in the cellular expression of CREBBP and then accelerating IFN-ß production. This study advances the understanding of the roles of circRNAs in the cellular innate antiviral response.


Assuntos
Proteína de Ligação a CREB/metabolismo , Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interferon beta/imunologia , MicroRNAs/metabolismo , RNA Circular/genética , Replicação Viral/genética , Células A549 , Proteína de Ligação a CREB/genética , Células HEK293 , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Interferon beta/genética , MicroRNAs/genética
13.
J Biol Chem ; 296: 100096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208464

RESUMO

Rabies virus (RABV) matrix protein (M) plays crucial roles in viral transcription, replication, assembly, and budding; however, its function during the early stage of virus replication remains unknown. Here, we mapped the protein interactome between RABV M and human host factors using a proteomic approach, finding a link to the V-type proton ATPase catalytic subunit A (ATP6V1A), which is located in the endosomes where RABV first enters. By downregulating or upregulating ATP6V1A expression in HEK293T cells, we found that ATP6V1A facilitated RABV replication. We further found that ATP6V1A was involved in the dissociation of incoming viral M proteins during viral uncoating. Coimmunoprecipitation demonstrated that M interacted with the full length or middle domain of ATP6V1A, which was dependent on the lysine residue at position 256 and the glutamic acid residue at position 279. RABV growth and uncoating in ATP6V1A-depleted cells was restored by trans-complementation with the full length or interaction domain of ATP6V1A. Moreover, stably overexpressed ATP6V1A enhanced RABV growth in Vero cells, which are used for the production of rabies vaccine. Our findings identify a new partner for RABV M proteins and establish a new role of ATP6V1A by promoting virion uncoating during RABV replication.


Assuntos
ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Células HEK293 , Humanos , Imunoprecipitação , Espectrometria de Massas , Plasmídeos/genética , Proteômica , Interferência de RNA , Raiva/imunologia , Raiva/prevenção & controle , Vacina Antirrábica/imunologia , Vacina Antirrábica/uso terapêutico , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , ATPases Vacuolares Próton-Translocadoras/genética , Células Vero , Replicação Viral/genética , Replicação Viral/fisiologia
14.
Protein Cell ; 11(10): 776-782, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32749592
15.
Vet Microbiol ; 241: 108549, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928698

RESUMO

Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.


Assuntos
Infecções por Henipavirus/prevenção & controle , Vírus Nipah/imunologia , Vacinas Virais/imunologia , Vacinas Virais/normas , Administração Oral , Animais , Animais Lactentes , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos , Imunidade Humoral , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vírus da Raiva/genética , Vírus da Raiva/crescimento & desenvolvimento , Vírus da Raiva/patogenicidade , Suínos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/normas , Proteínas Virais/genética , Vacinas Virais/administração & dosagem , Virulência , Zoonoses
16.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666383

RESUMO

Rabies virus (RABV) is a widespread pathogen that causes fatal disease in humans and animals. It has been suggested that multiple host factors are involved in RABV host entry. Here, we showed that RABV uses integrin ß1 (ITGB1) for cellular entry. RABV infection was drastically decreased after ITGB1 short interfering RNA knockdown and moderately increased after ITGB1 overexpression in cells. ITGB1 directly interacts with RABV glycoprotein. Upon infection, ITGB1 is internalized into cells and transported to late endosomes together with RABV. The infectivity of cell-adapted RABV in cells and street RABV in mice was neutralized by ITGB1 ectodomain soluble protein. The role of ITGB1 in RABV infection depends on interaction with fibronectin in cells and mice. We found that Arg-Gly-Asp (RGD) peptide and antibody to ITGB1 significantly blocked RABV infection in cells in vitro and street RABV infection in mice via intramuscular inoculation but not the intracerebral route. ITGB1 also interacts with nicotinic acetylcholine receptor, which is the proposed receptor for peripheral RABV infection. Our findings suggest that ITGB1 is a key cellular factor for RABV peripheral entry and is a potential therapeutic target for postexposure treatment against rabies.IMPORTANCE Rabies is a severe zoonotic disease caused by rabies virus (RABV). However, the nature of RABV entry remains unclear, which has hindered the development of therapy for rabies. It is suggested that modulations of RABV glycoprotein and multiple host factors are responsible for RABV invasion. Here, we showed that integrin ß1 (ITGB1) directly interacts with RABV glycoprotein, and both proteins are internalized together into host cells. Differential expression of ITGB1 in mature muscle and cerebral cortex of mice led to A-4 (ITGB1-specific antibody), and RGD peptide (competitive inhibitor for interaction between ITGB1 and fibronectin) blocked street RABV infection via intramuscular but not intracerebral inoculation in mice, suggesting that ITGB1 plays a role in RABV peripheral entry. Our study revealed this distinct cellular factor in RABV infection, which may be an attractive target for therapeutic intervention.


Assuntos
Integrina beta1/metabolismo , Vírus da Raiva/metabolismo , Raiva/metabolismo , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Animais , Endossomos/genética , Endossomos/metabolismo , Endossomos/virologia , Fibronectinas/genética , Fibronectinas/metabolismo , Células HEK293 , Humanos , Integrina beta1/genética , Camundongos , Oligopeptídeos/farmacologia , Raiva/tratamento farmacológico , Raiva/genética , Raiva/patologia , Vírus da Raiva/genética , Proteínas Virais de Fusão/genética
17.
Virol J ; 16(1): 151, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805959

RESUMO

BACKGROUND: Bluetongue virus (BTV), an emerging insect vector mediated pathogen affecting both wild ruminants and livestock, has a genome consisting of 10 linear double-stranded RNA genome segments. BTV has a severe economic impact on agriculture in many parts of the world. Current reverse genetics (RG) strategy to rescue BTV mainly rely on in vitro synthesis of RNA transcripts from cloned complimentary DNA (cDNA) corresponding to viral genome segments with the aid of helper plasmids. RNA synthesis is a laborious job which is further complicated with a need for expensive reagents and a meticulous operational procedure. Additionally, the target genes must be cloned into a specific vector to prepare templates for RNA transcription. RESULT: In this study, we have developed a PCR based BTV RG system with easy two-step transfection. Viable viruses were recovered following a first transfection with the seven helper plasmids and a second transfection with the 10 PCR products on the BSR cells. Further, recovered viruses were characterized with indirect immunofluorescence assays (IFA) and gene sequencing. And the proliferation properties of these viruses were also compared with wild type BTV. Interestingly, we have identified that viruses containing the segment 2 of the genome from reassortant BTV, grew slightly slower than the others. CONCLUSION: In this study, a convenient PCR based RG platform for BTV is established, and this strategy could be an effective alternative to the original available BTV rescue methods. Furthermore, this RG strategy is likely applicable for other Orbiviruses.


Assuntos
Vírus Bluetongue/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Genética Reversa/métodos , Virologia/métodos , Animais , Vírus Bluetongue/genética , Linhagem Celular , Cricetinae , Viabilidade Microbiana , Plasmídeos , Transfecção
18.
Vet Microbiol ; 239: 108490, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31767075

RESUMO

Highly pathogenic porcine reproductive and respiratory syndrome (HP-PRRS) poses a significant threat to the pig industry, for which vaccination is considered to be an effective means of prevention and control. Here, we developed two recombinant Newcastle disease virus (NDV) LaSota-vectored PRRS candidate vaccines, rLaSota-GP5 and rLaSota-GP3-GP5, using reverse genetic techniques. The two recombinant viruses exhibited a high degree of genetic stability after 10 successive generations in chicken embryos. There was no significant difference in pathogenicity compared with the rLaSota parent strain in poultry, mice and pigs. The recombinant viruses could not be detected in the feeding environment of immunized pigs, but could be detected in the organs and tissues of pigs for no more than 10 days after immunization. Importantly, in contrast to rLaSota-GP5, rLaSota-GP3-GP5 elicited both significant humoral and cellular immune responses in pigs. In particular, the neutralizing antibody titer in the rLaSota-GP3-GP5 group was 1.51 times significantly higher than that of the commercial vaccine group at 42 days post-immunization. At the same time, there was significant difference in the level of IFN-γ between the rLaSota-GP3-GP5 group and the commercial vaccine group. Furthermore, the viral load in the organs and tissues of rLaSota-GP3-GP5-immunized pigs was substantially lower than that of unimmunized pigs after being challenged with HP-PRRS virus GD strain. These results suggest that rLaSota-GP3-GP5 is a safe and promising candidate vaccine, and there is potential for further development of a recombinant virus vaccine for PRRS using NDV.


Assuntos
Vírus da Doença de Newcastle/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Suínos
19.
Vet Microbiol ; 232: 146-150, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31030839

RESUMO

Newcastle disease virus (NDV) is a major threat to poultry worldwide. Virulent Newcastle disease virus infection can cause 100% morbidity and mortality in chickens. Vaccination is the most effective way to prevent and control NDV outbreaks in poultry. Previously, we demonstrated that a duck enteritis virus (DEV) vaccine strain is a promising vector to generate recombinant vaccines in chickens. Here, we constructed two recombinant DEVs expressing the F protein (rDEV-F) or HN protein (rDEV-HN) of NDV. We then evaluated the protective efficacy of these recombinant DEVs in specific-pathogen-free chickens. rDEV-F induced 100% protection of chickens from lethal NDV challenge after a single dose of 104 TCID50, whereas rDEV-HN did not induce effective protection. rDEV-F may therefore serve as a promising vaccine candidate for chickens. This is the first report of a DEV-vectored vaccine providing robust protection against lethal NDV infection in chickens.


Assuntos
Mardivirus/genética , Doença de Newcastle/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Proteínas Virais de Fusão/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais , Galinhas/imunologia , Galinhas/virologia , Patos/virologia , Proteína HN/genética , Proteína HN/imunologia , Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/genética , Vacinas Virais/administração & dosagem
20.
Front Microbiol ; 10: 2882, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921060

RESUMO

Although canine adenovirus (CAdV) is highly prevalent in dogs, there is currently a lack of a quick diagnostic method. In this study, we developed a rapid immunochromatographic strip (ICS) assay using colloidal gold coupled to CAdV-2-specific monoclonal antibodies (mAbs). BALB/c mice were immunized with a purified CAdV-2 suspension, and four mAbs (belonging to two different epitopes) were generated and designated as 2C1, 7D7, 10D1, and 4G1. Western blot and protein spectral analysis indicated that the hexon protein of CAdV-2 recognized all four mAbs. The colloidal gold-coupled 7D7 and 2C1 mAbs were chosen for inclusion in the rapid ICS assay. The optimal concentrations of the coating antibody (2C1), the capture antibody (7D7), and the goat anti-mouse antibody were 1.0 mg/ml, 10 µg/ml, and 2.0 mg/ml, respectively. The limit of detection was approximately 2.0 × 102 tissue culture infective dose (TCID50)/ml. Other common canine viruses were tested to evaluate the specificity of the ICS, and positive results were observed for only CAdV-1 and CAdV-2. The ICS test was conducted on 360 samples to detect CAdV, and the results were compared with those of polymerase chain reaction (PCR) tests. The ICS test was found to be a sufficiently sensitive and specific detection method for the convenient and rapid detection of CAdV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA