RESUMO
A thorough understanding and identification of potential determinants leading to frailty are imperative for the development of targeted interventions aimed at its prevention or mitigation. We investigated the potential determinants of frailty in a cohort of 469,301 UK Biobank participants. The evaluation of frailty was performed using the Fried index, which encompasses measurements of handgrip strength, gait speed, levels of physical activity, unintentional weight loss, and self-reported exhaustion. EWAS including 276 factors were first conducted. Factors associated with frailty in EWAS were further combined to generate composite scores for different domains, and joint associations with frailty were evaluated in a multivariate logistic model. The potential impact on frailty when eliminating unfavorable profiles of risk domains was evaluated by PAFs. A total of 21,020 (4.4%) participants were considered frailty, 192,183 (41.0%) pre-frailty, and 256,098 (54.6%) robust. The largest EWAS identified 90 modifiable factors for frailty across ten domains, each of which independently increased the risk of frailty. Among these factors, 67 have the potential to negatively impact health, while 23 have been found to have a protective effect. When shifting all unfavorable profiles to intermediate and favorable ones, overall adjusted PAF for potentially modifiable frailty risk factors was 85.9%, which increases to 86.6% if all factors are transformed into favorable tertiles. Health and medical history, psychosocial factors, and physical activity were the most significant contributors, accounting for 11.9%, 10.4%, and 10.1% respectively. This study offers valuable insights for developing population-level strategies aimed at preventing frailty.
RESUMO
Proteomic alterations preceding the onset of depression offer valuable insights into its development and potential interventions. Leveraging data from 46,165 UK Biobank participants and 2920 plasma proteins profiled at baseline, we conducted a longitudinal analysis with a median follow-up of 14.5 years to explore the relationship between plasma proteins and incident depression. Linear regression was then used to assess associations between depression-related proteins and brain structures, genetic factors, and stress-related events. Our analysis identified 157 proteins associated with incident depression (P <1.71 × 10-5), including novel associations with proteins such as GAST, PLAUR, LRRN1, BCAN, and ITGA11. Notably, higher expression levels of GDF15 (P = 6.18 × 10-26) and PLAUR (P = 2.88 × 10-14) were linked to an increased risk of depression, whereas higher levels of LRRN1 (P = 4.28 × 10-11) and ITGA11 (P = 3.68 × 10-9) were associated with a decreased risk. Dysregulation of the 157 proteins is correlated with brain regions implicated in depression, including the hippocampus and middle temporal gyrus. Additionally, these protein alterations were strongly correlated with stress-related events, including self-harm events, adult, and childhood trauma. Biological pathway enrichment analysis highlighted the critical roles of the immune response. EGFR and TNF emerged as key proteins in the protein-protein interaction network. BTN3A2, newly linked to incident depression (P = 4.35 × 10-10), was confirmed as a causal factor through Mendelian randomization analysis. In summary, our research identified the proteomic signatures associated with the onset of depression, highlighting its potential for early intervention and tailored therapeutic avenues.
RESUMO
AIMS: Brain structural alterations begin long before the presentation of brain disorders; therefore, we aimed to systematically investigate a wide range of influencing factors on neuroimaging markers of brain health. METHODS: Utilizing data from 30,651 participants from the UK Biobank, we explored associations between 218 modifiable factors and neuroimaging markers of brain health. We conducted an exposome-wide association study using the least absolute shrinkage and selection operator (LASSO) technique. Restricted cubic splines (RCS) were further employed to estimate potential nonlinear correlations. Weighted standardized scores for neuroimaging markers were computed based on the estimates for individual factors. Finally, stratum-specific analyses were performed to examine differences in factors affecting brain health at different ages. RESULTS: The identified factors related to neuroimaging markers of brain health fell into six domains, including systematic diseases, lifestyle factors, personality traits, social support, anthropometric indicators, and biochemical markers. The explained variance percentage of neuroimaging markers by weighted standardized scores ranged from 0.5% to 7%. Notably, associations between systematic diseases and neuroimaging markers were stronger in older individuals than in younger ones. CONCLUSION: This study identified a series of factors related to neuroimaging markers of brain health. Targeting the identified factors might help in formulating effective strategies for maintaining brain health.
Assuntos
Encéfalo , Neuroimagem , Humanos , Masculino , Feminino , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Adulto , Biomarcadores , Imageamento por Ressonância Magnética/métodos , Reino Unido/epidemiologia , Estilo de VidaRESUMO
OBJECTIVE: The α-globin fusion gene between the HBA2 and HBAP1 genes, is clinically important in thalassemia screening because this fusion gene can cause severe hemoglobin (Hb) H disease when combined with α0 -thalassemia (α0 -thal). In this study, we evaluate the red blood cell parameters of α-thalassemia fusion gene in southern China. METHOD: Study samples suspected of α-thalassemia fusion gene were collected and confirmed by PCR-sequencing from one medical lab center in southern China. Their genotypes and phenotypes were analyzed. RESULTS: A total of 266 cases of α-thalassemia fusion gene were confirmed in our lab from 2017 to 2023, most of them were from Hainan province (169 cases) and Huadu district of Guangzhou (21 cases), the nationality of 143 cases from Hainan was identified, with 71.3% (102/143) being from the Li minority. The Hb, MCV, MCH for αα/(αα)fusion in adult males were 143.5±11.83g/L, 81.51±4.39 fl, and 26.26±1.29 pg, respectively; and in females, they were 126.69±12.89 g/L, 80.10±4.05 fl, 25.8±2.04 pg, respectively. All 12 cases (αα) Fusion/ --SEA showed anemia with decreased Hb, MCV and MCH. CONCLUSION: The carriers of α-globin fusion gene heterozygotes are clinically silent and exhibit an α+ phenotype. Individuals with (αα)Fusion/--SEA show apparent anemia. This α-globin fusion gene is relatively common in southern China, specifically among the Li minority of Hainan province. Therefore, it should be taken into account for genetic counseling purposes.
Assuntos
Genótipo , Fenótipo , Talassemia alfa , Humanos , Talassemia alfa/genética , Talassemia alfa/epidemiologia , Masculino , Feminino , China/epidemiologia , Adulto , alfa-Globinas/genética , Pessoa de Meia-Idade , Criança , Adolescente , Adulto JovemRESUMO
Objective: This study aimed to develop and assess a novel reverse dot blot assay for the simultaneous detection of 10 types of α-thalassemia alleles in the Chinese population, including six common variants of-SEA, -α3.7, -α4.2, αCS, αQS, and αWS, and four rare variants of αααanti-4.2, αααanti-3.7, --FIL deletion and--THAI deletion. Methods: The novel thalassemia gene assay utilized a two-tier multiplex polymerase chain reaction amplification system and one round of hybridization. Genomic DNA samples were sourced from three hospitals in southern China. Each clinically validated DNA sample was re-evaluated using the new multiplex polymerase chain reaction/reverse dot blot assay â ¢ (M-PCR/RDB â ¢). Results: The study analyzed a total of 1,148 unrelated participants, consisting of 810 thalassemia patients and 338 healthy control subjects. Valid hybridization results were obtained for 1,147 samples, with one case (thalassemia carrier) being excluded from the study due to the poor quality of DNA. All 1,147 samples, including those with α heterozygous thalassemia, α homozygous thalassemia, α compound heterozygous thalassemia, and control subjects were accurately genotyped, showing 100% concordance with the reference assays. Conclusion: The novel M-PCR/RDB â ¢ assay proved to be simple, rapid, and precise, indicating its potential for genetic screening and clinical diagnosis of both common and rare α-thalassemia variants in Chinese populations.
RESUMO
Aim: Mycoplasma pneumoniae (MP) is a common cause of respiratory infections, and its incidence has increased post-COVID-19 due to "immune debt." Real-time quantitative polymerase chain reaction (qPCR) is the standard for detecting MP, but it has a lengthy detection time. This study aimed to establish a highly sensitive rapid detection method for MP.Materials & methods: We developed an integrated assay combining multienzyme isothermal rapid amplification (MIRA) with qPCR, referred to as MIRA-qPCR, for the rapid detection of MP, delivering results within approximately 40 min.Results: The analytic sensitivity of the MIRA-qPCR assay was 10 copies per reaction, and it exhibited no cross-reactivity with other respiratory pathogens, ensuring high specificity. Clinical sample analysis demonstrated higher sensitivity for MIRA-qPCR compared to qPCR reported in the literature, and 100% concordance with commercial qPCR kit.Conclusion: The MIRA-qPCR method established in this study is a promising tool for the clinical detection of MP, offering significant advantages for the rapid diagnosis of MP infections.
Mycoplasma pneumoniae is a bacteria that can make us sick. It mainly affects the lungs and can cause a sickness called "walking pneumonia". This is because it can make you poorly, but not so badly that you are unable to walk around. This bacteria spreads when someone that is infected sneezes or coughs. It is important that M. pneumoniae can be diagnosed quickly. This article looks at a new, fast way to identify infection called MIRA-quantitative PCR.
Assuntos
Técnicas de Diagnóstico Molecular , Mycoplasma pneumoniae , Técnicas de Amplificação de Ácido Nucleico , Pneumonia por Mycoplasma , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/isolamento & purificação , Humanos , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , COVID-19/diagnósticoRESUMO
OBJECTIVES: This study aims to investigate whether alterations in white matter topological networks are associated with focal to bilateral tonic-clonic seizures (FBTCS) in temporal lobe epilepsy (TLE). Additionally, we investigated the variables contributing to memory impairment in TLE. METHODS: This cross-sectional study included 88 unilateral people with TLE (45 left/43 right), and 42 healthy controls. Graph theory analysis was employed to compare the FBTCS (+) group (n = 51) with the FBTCS (-) group (n = 37). The FBTCS (+) group was subcategorized into current-FBTCS (n = 31) and remote-FBTCS (n = 20), based on the history of FBTCS within 1 year or longer than 1 year before scanning, respectively. We evaluated the discriminatory power of topological network properties by receiver operating characteristic (ROC) analysis. Generalized linear models (GLMs) were employed to investigate variables associated with memory impairment in TLE. RESULTS: Global efficiency (Eg) was significantly reduced in the FBTCS (+) group, especially in the current-FBTCS subgroup. Greater disruption of regional properties in the ipsilateral occipital and temporal association cortices was observed in the FBTCS (+) group. ROC analysis revealed that Eg, normalized characteristic shortest path length, and nodal efficiency of the ipsilateral middle temporal gyrus could distinguish between FBTCS (+) and FBTCS (-) groups. Additionally, GLMs linked the occurrence of current FBTCS with poorer verbal memory outcomes in TLE. INTERPRETATION: Our study suggests that abnormal networks could be the structural basis of seizure propagation in FBTCS. Strategies aimed at reducing the occurrence of FBTCS could potentially improve the memory outcomes in people with TLE.
Assuntos
Epilepsia do Lobo Temporal , Convulsões , Substância Branca , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/complicações , Masculino , Feminino , Adulto , Estudos Transversais , Pessoa de Meia-Idade , Convulsões/fisiopatologia , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Imageamento por Ressonância MagnéticaRESUMO
As the two important ambient air pollutants, particulate matter (PM2.5) and ozone (O3) can both originate from gas nitrogen oxides. In this study, applied by theoretical analysis and machine learning method, we examined the effects of atmospheric reactive nitrogen on PM2.5-O3 pollution, in which nitric oxide (NO), nitrogen dioxide (NO2), gaseous nitric acid (HNO3) and particle nitrate (pNO3-) conversion process has the co-directional and contra-directional effects on PM2.5-O3 pollution. Of which, HNO3 and SO2 are the co-directional driving factors resulting in PM2.5 and O3 growing or decreasing simultaneously; while NO, NO2, and temperature represent the contra-directional factors, which can promote the growth of one pollutant and reduce another one. Our findings suggest that designing the suitable co-controlling strategies for PM2.5-O3 sustainable reduction should target at driving factors by considering the contra-directional and co-directional effects under suitable sensitivity regions. For co-directional driving factors, the design of suitable mitigation strategies will jointly achieve effective reduction in PM2.5 and O3; while for contra-directional driving factors, it should be more patient, otherwise, it is possible to reduce one item but increase another one at the same time.
RESUMO
High-altitude pulmonary edema (HAPE) is a fatal threat for sojourners who ascend rapidly without sufficient acclimatization. Acclimatized sojourners and adapted natives are both insensitive to HAPE but have different physiological traits and molecular bases. In this study, based on GSE52209, the gene expression profiles of HAPE patients were compared with those of acclimatized sojourners and adapted natives, with the common and divergent differentially expressed genes (DEGs) and their hub genes identified, respectively. Bioinformatic methodologies for functional enrichment analysis, immune infiltration, diagnostic model construction, competing endogenous RNA (ceRNA) analysis and drug prediction were performed to detect potential biological functions and molecular mechanisms. Next, an array of in vivo experiments in a HAPE rat model and in vitro experiments in HUVECs were conducted to verify the results of the bioinformatic analysis. The enriched pathways of DEGs and immune landscapes for HAPE were significantly different between sojourners and natives, and the common DEGs were enriched mainly in the pathways of development and immunity. Nomograms revealed that the upregulation of TNF-α and downregulation of RPLP0 exhibited high diagnostic efficiency for HAPE in both sojourners and natives, which was further validated in the HAPE rat model. The addition of TNF-α and RPLP0 knockdown activated apoptosis signaling in endothelial cells (ECs) and enhanced endothelial permeability. In conclusion, TNF-α and RPLP0 are shared biomarkers and molecular bases for HAPE susceptibility during the acclimatization/adaptation/maladaptation processes in sojourners and natives, inspiring new ideas for predicting and treating HAPE.
Assuntos
Doença da Altitude , Apoptose , Células Endoteliais , Proteínas Ribossômicas , Fator de Necrose Tumoral alfa , Animais , Humanos , Masculino , Ratos , Altitude , Doença da Altitude/genética , Doença da Altitude/metabolismo , Doença da Altitude/patologia , Apoptose/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismoRESUMO
Antimicrobial resistance (AMR) presents an escalating global challenge as conventional antibiotic treatments become less effective. In response, photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising alternatives. While rooted in ancient practices, these methods have evolved with modern innovations, particularly through the integration of lasers, refining their efficacy. PDT harnesses photosensitizers to generate reactive oxygen species (ROS), which are detrimental to microbial cells, whereas PTT relies on heat to induce cellular damage. The key to their effectiveness lies in the utilization of photosensitizers, especially when integrated into nano- or micron-scale supports, which amplify ROS production and enhance antimicrobial activity. Over the last decade, carbon dots (CDs) have emerged as a highly promising nanomaterial, attracting increasing attention owing to their distinctive properties and versatile applications, including PDT and PTT. They can not only function as photosensitizers, but also synergistically combine with other photosensitizers to enhance overall efficacy. This review explores the recent advancements in CDs, underscoring their significance and potential in reshaping advanced antimicrobial therapeutics.
RESUMO
INTRODUCTION: Alzheimer's disease (AD) is a devastating neurological disease with complex genetic etiology. Yet most known loci have only identified from the late-onset type AD in populations of European ancestry. METHODS: We performed a two-stage genome-wide association study (GWAS) of AD totaling 6878 Chinese and 63,926 European individuals. RESULTS: In addition to the apolipoprotein E (APOE) locus, our GWAS of two independent Chinese samples uncovered three novel AD susceptibility loci (KIAA2013, SLC52A3, and TCN2) and a novel ancestry-specific variant within EGFR (rs1815157). More replicated variants were observed in the Chinese (31%) than in the European samples (15%). In combining genome-wide associations and functional annotations, EGFR and TCN2 were prioritized as two of the most biologically significant genes. Phenome-wide Mendelian randomization suggests that high mean corpuscular hemoglobin concentration might protect against AD. DISCUSSION: The current study reveals novel AD susceptibility loci, emphasizes the importance of diverse populations in AD genetic research, and advances our understanding of disease etiology. HIGHLIGHTS: Loci KIAA2013, SLC52A3, and TCN2 were associated with Alzheimer's disease (AD) in Chinese populations. rs1815157 within the EGFR locus was associated with AD in Chinese populations. The genetic architecture of AD varied between Chinese and European populations. EGFR and TCN2 were prioritized as two of the most biologically significant genes. High mean corpuscular hemoglobin concentrations might have protective effects against AD.
Assuntos
Doença de Alzheimer , População do Leste Asiático , Predisposição Genética para Doença , População Branca , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Receptores ErbB/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , População Branca/genética , População do Leste Asiático/genéticaRESUMO
The fermentation process has a significant impact on the aromatic profile of wines, particularly in relation to the difference in fermentation matrix caused by grape varieties. This study investigates the leaching and evolution patterns of aroma compounds in Vitis vinifera L. Marselan and Merlot during an industrial-scale vinification process, including the stages of cold soak, alcohol fermentation, malolactic fermentation, and one-year bottle storage. The emphasis is on the differences between the two varieties. The results indicated that most alcohols were rapidly leached during the cold soak stage. Certain C6 alcohols, terpenes, and norisoprenoids showed faster leaching rates in 'Marselan', compared to 'Merlot'. Some branched chain fatty-acid esters, such as ethyl 3-methylbutyrate, ethyl 2-methylbutyrate, and ethyl lactate, consistently increased during the fermentation and bottling stages, with faster accumulation observed in 'Marselan'. The study combines the Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) model based on odor activity values to elucidate the accumulation of these ethyl esters during bottle storage, compensating for the reduction in fruity aroma resulting from decreased levels of (E)-ß-damascenone. The 'Marselan' wine exhibited a more pronounced floral aroma due to its higher level of linalool, compared to the 'Merlot' wine. The study unveils the distinctive variation patterns of aroma compounds from grapes to wine across grape varieties. This provides a theoretical framework for the precise regulation of wine aroma and flavor, and holds significant production value.
Assuntos
Fermentação , Odorantes , Vitis , Compostos Orgânicos Voláteis , Vinho , Vitis/química , Vinho/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Frutas/química , Álcoois/análise , Terpenos/análise , Cromatografia Gasosa-Espectrometria de MassasRESUMO
BACKGROUND: Retroperitoneal leiomyomas (RLs) are rare benign tumours that can occur in the pelvic and/or abdominal parietal retroperitoneum. Once torsion occurs, it causes acute abdominal pain and can even lead to serious consequences such as gangrene, peritonitis, haemoperitoneum and shock if not identified and treated promptly. Therefore, a better understanding of the characteristics of RL torsion is needed. Here, we present a case of acute pedicle torsion of an RL in the posterior peritoneum followed by a literature review. CASE SUMMARY: Herein, we report the case of a 42-year-old woman with RL torsion. The patient visited our hospital complaining of lower abdominal pain for 6 d. Pelvic examination revealed a tender mass superior to the uterus. Pelvic magnetic resonance imaging (MRI) revealed an anterior uterine mass, multiple uterine fibroids and slight pelvic effusion. MRI suggested the possibility of a subserosal myoma of the anterior uterine wall with degeneration. Intraoperative exploration revealed a 10 cm pedunculated mass arising from the posterior peritoneum, with the pedicle torsed two times. Pathological examination confirmed a torsed RL. CONCLUSION: In the case of a pelvic mass complicated with acute abdomen, the possibility of torsion should be considered.
RESUMO
For multicenter-catalyzed reactions, it is important to accurately construct heterogeneous catalysts containing multiple active centers with high activity and low cost, which is more challenging compared to homogeneous catalysts because of the low activity and spatial confinement of active centers in the loaded state. Herein, a convenient protein confinement strategy is reported to locate Pd and Cu single atoms in crowding state on carbon coated alumina for promoting Sonogashira reaction, the most powerful method for constructing the acetylenic moiety in molecules. The single-atomic Pd and Cu centers take advantage in not only the maximized atomic utilization for low cost, but also the much-enhanced performance by facilitating the activation of aryl halides and alkynes. Their locally crowded dispersion brings them closer to each other, which facilitates the transmetallation process of acetylide intermediates between them. Thus, the Sonogashira reaction is drove smoothly by the obtained catalyst with a turnover frequency value of 313 h-1, much more efficiently than that by commercial Pd/C and CuI catalyst, conventional Pd and Cu nanocatalysts, and mixed Pd and Cu single-atom catalyst. The obtained catalyst also exhibits the outstanding durability in the recycling test.
RESUMO
Considerable uncertainty remains regarding the associations of multiple factors with brain health. We aimed to conduct an exposome-wide association study on neurodegenerative disease and neuropsychiatry disorders using data of participants from the UK Biobank. Multivariable Cox regression models with the least absolute shrinkage and selection operator technique as well as principal component analyses were used to evaluate the exposures in relation to common disorders of central nervous system (CNS). Restricted cubic splines were conducted to explore potential nonlinear correlations. Then, weighted standardized scores were generated based on the coefficients to calculate the joint effects of risk factors. We also estimated the potential impact of eliminating the unfavorable profiles of risk domains on CNS disorders using population attributable fraction (PAF). Finally, sensitivity analyses were performed to reduce the risk of reverse causality. The current study discovered the significantly associated exposures fell into six primary exposome categories. The joint effects of identified risk factors demonstrated higher risks for common disorders of CNS (HR = 1.278 ~ 3.743, p < 2e-16). The PAF varied by exposome categories, with lifestyle and medical history contributing to majority of disease cases. In total, we estimated that up to 3.7 ~ 64.1% of disease cases could be prevented.This study yielded modifiable variables of different categories and assessed their joint effects on common disorders of CNS. Targeting the identified exposures might help formulate effective strategies for maintaining brain health.
Assuntos
Expossoma , Humanos , Feminino , Masculino , Fatores de Risco , Pessoa de Meia-Idade , Idoso , Doenças Neurodegenerativas/epidemiologia , Reino Unido/epidemiologia , Modelos de Riscos Proporcionais , Encéfalo , Estilo de VidaRESUMO
Introduction: In the evolving field of neurophysiological research, visual light flicker stimulation is recognized as a promising non-invasive intervention for cognitive enhancement, particularly in sleep-deprived conditions. Methods: This study explored the effects of specific flicker frequencies (40 Hz and 20-30 Hz random flicker) on alertness recovery in sleep-deprived rats. We employed a multidisciplinary approach that included behavioral assessments with the Y-maze, in vivo electrophysiological recordings, and molecular analyses such as c-FOS immunohistochemistry and hormone level measurements. Results: Both 40 Hz and 20-30 Hz flicker significantly enhanced behavioral performance in the Y-maze test, suggesting an improvement in alertness. Neurophysiological data indicated activation of neural circuits in key brain areas like the thalamus and hippocampus. Additionally, flicker exposure normalized cortisol and serotonin levels, essential for stress response and mood regulation. Notably, increased c-FOS expression in brain regions related to alertness and cognitive functions suggested heightened neural activity. Discussion: These findings underscore the potential of light flicker stimulation not only to mitigate the effects of sleep deprivation but also to enhance cognitive functions. The results pave the way for future translational research into light-based therapies in human subjects, with possible implications for occupational health and cognitive ergonomics.
RESUMO
PM2.5 and O3 are two of the main air pollutants that have adverse impacts on climate and human health. The evolution process of PM2.5 and O3 co-pollution are of concern because of the increased frequency of PM2.5 and O3 co-pollution days. Here, we examined the chemical coupling and revealed the driving factors of the PM2.5 and O3 co-pollution evolution process from cleaning day, PM2.5 pollution day, or O3 pollution day, applied by theoretical analysis and model calculation methods. The results demonstrate that PM2.5 and O3 co-pollution day frequently occurred with high concentrations of gaseous precursors and higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), which we attribute to the enhancement of atmospheric oxidation capacity (AOC). The AOC is positively correlated with O3 and weakly correlated with PM2.5. In addition, we found that the correlation coefficients of PM2.5-NO2 (0.62) were higher than that of PM2.5-SO2 (0.32), highlighting the priority of NOx controlling to mitigate PM2.5 pollution. Overall, our discovery can provide scientific evidence to design feasible solutions for the controlling PM2.5 and O3 co-pollution process.
RESUMO
BACKGROUND AND AIMS: The impact of lipids on the overall survival (OS) of patients with malignancy has not yet been clarified. This study aimed to evaluate the effect of hyperlipidemia on the OS among Chinese patients based on Body Mass Index (BMI) stratifications and hyperlipidemia types. METHOD: The patients in this study were derived from the Investigation of the Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) trial. Kaplan-Meier was used to draw the survival curve, and the log-rank test was used to estimate the survival rates between each group. Cox proportional hazards regression models were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI). RESULTS: A total of 9054 patients were included in the final study, with a median age of 59 years, and 55.3% (5004) of them were males. Regarding types of hyperlipidemia, only low high-density lipoprotein was an independent risk factor for the prognosis of all patients (HR = 1.35, 95% CI: 1.25-1.45, P < 0.001), while high total cholesterol (HR = 1.01, 95% CI: 0.90-1.15, P = 0.839) and high low-density lipoprotein (HR = 1.03, 95%CI: 0.91-1.16, P = 0.680) were not. In terms of BMI stratification, the effect of triglycerides on prognosis varied; high triglycerides were an independent risk factor for the prognosis of underweight patients (HR = 1.56, 95% CI:1.05-2.32, P = 0.027) and a protective factor for overweight patients (HR = 0.75, 95% CI: 0.63-0.89, P = 0.001). However, for normal-weight patients, there was no significant statistical difference (HR = 0.88, 95%CI: 0.75-1.03, P = 0.108). CONCLUSIONS: The impact of hyperlipidemia on the OS among patients with cancer varied by different BMI and hyperlipidemia types. BMI and hyperlipidemia type ought to be considered in combination to estimate the prognosis of patients with malignancy.
RESUMO
Quantum heat engines and refrigerators are open quantum systems, whose dynamics can be well understood using a non-Hermitian formalism. A prominent feature of non-Hermiticity is the existence of exceptional points (EPs), which has no counterpart in closed quantum systems. It has been shown in classical systems that dynamical encirclement in the vicinity of an EP, whether the loop includes the EP or not, could lead to chiral mode conversion. Here, we show that this is valid also for quantum systems when dynamical encircling is performed in the vicinity of their Liouvillian EPs (LEPs), which include the effects of quantum jumps and associated noise-an important quantum feature not present in previous works. We demonstrate, using a Paul-trapped ultracold ion, the first chiral quantum heating and refrigeration by dynamically encircling a closed loop in the vicinity of an LEP. We witness the cycling direction to be associated with the chirality and heat release (absorption) of the quantum heat engine (quantum refrigerator). Our experiments have revealed that not only the adiabaticity breakdown but also the Landau-Zener-Stückelberg process play an essential role during dynamic encircling, resulting in chiral thermodynamic cycles. Our observations contribute to further understanding of chiral and topological features in non-Hermitian systems and pave a way to exploring the relation between chirality and quantum thermodynamics.
RESUMO
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.