Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 229: 115241, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958207

RESUMO

This work develops a novel photoelectrochemical sensor for the detection of carcinoembryonic antigen (CEA) based on the composite of UCNPs with semiconductors and conformational changes in the DNA structure. Firstly, SnS2, ZnIn2S4 and UCNPs were assembled on the surface of the ITO electrode. Then Au NPs were dropped, which could facilitate the coupling of CdSe NPs modified DNA1 via Au-S bond, giving an ITO/SnS2/ZnIn2S4/UCNPs/CdSe heterojunction structure. When irradiated with 980 nm near-infrared (NIR) light, the UV-visible light emitted by the UCNPs could excite the nanocomposite, producing an enhanced photoelectric reaction. Subsequently, CEA aptamer and DNA2-modified SiO2 were added to form a Y-shaped DNA structure. At this time, the photocurrent was significantly reduced by the combination of the light-blocking effect of SiO2 and the departure of CdSe NPs from the electrode surface. When the target CEA was added, the recognition between CEA and the aptamer led to the collapse of the Y-shaped DNA structure, the restoration of hairpin DNA and the proximity of CdSe to the electrode. Accordingly, the photocurrent signals enhanced again. Under optimal experimental conditions, the detection limit as low as 0.3 pg mL-1 was obtained with good selectivity, achieving a sensitive "on-off-on" photoelectrochemical sensor for CEA detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Antígeno Carcinoembrionário/química , Dióxido de Silício , Técnicas Eletroquímicas , Limite de Detecção , DNA/química , Aptâmeros de Nucleotídeos/química
2.
Anal Chem ; 2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35603574

RESUMO

Cancer theranostics is of great significance in the personalized therapy. In this work, stable Janus nanoparticles (JNPs) containing PEG and two kinds of DNAs were prepared by means of "click chemistry". In response to ATP or acid condition, the prepared JNPs could form Au NP dimers, which facilitate in situ SERS detection and SERS imaging analysis of cancer cells due to the formation of "hot spots" in the nanogap between the Au NP dimers. A detection limit of 2.3 × 10-9 M was obtained for ATP. As for a pH sensor, the SERS signals increased with the decrease of pH value from 8.0 to 4.0. In situ monitoring of ATP or acid condition in cancer cells by SERS can improve the accuracy and sensitivity of diagnosis. Moreover, drugs and photosensitizers loaded on the other side of JNPs led to the chemotherapy/photodynamic therapy synergistic antitumor effect, which was verified by in vitro and in vivo experiments. Given the excellent performance in SERS detection and cancer therapy, the developed JNPs hold considerable potential in cancer theranostics.

3.
Mikrochim Acta ; 188(2): 51, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496853

RESUMO

A cathodic photoelectrochemical sensor has been developed for the determination of exosomes, based on a dual-signal reduction strategy. A heterostructure of NiO/BiOI/Au NP/CdSe was synthesized as a photoelectrochemical sensing interface, which is able to suppress the recombination of electron-hole pairs and produce a higher photocurrent. The obtained materials were characterized, and the mechanism for the generation of the cathodic photocurrent was proposed. CdSe QDs (quantum dots) modified with DNA2 were assembled on the electrode through the hybridization with EpCAM aptamer on the surface of ITO/NiO/BiOI/Au NP. The introduction of CdSe QDs to the electrode increases the photocurrent.The recognition of exosomes with aptamer DNA led to the separation of CdSe QDs from the electrode, which in turn caused the decrease of photocurrents. Meanwhile, the big volume of exosomes hinders the electron transfer between the electrode and electrolyte. Due to the dual reduction effect, a sensitive PEC sensor was obtained with a detection limit of 1.2 × 102 particles/µL exosomes (λex = 430 nm, bias voltage = - 0.1 V). The cathodic photoelectrochemical sensor showed good selectivity, performed well in a complex biological environment and could be used to distinguishbreast cancer patients from healthy individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA