Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Biol ; 22(1): 133, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853238

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent malignancy with a pressing need for improved therapeutic response and prognosis prediction. This study delves into a novel predictive model related to ferroptosis, a regulated cell death mechanism disrupting metabolic processes. RESULTS: Single-cell sequencing data analysis identified subpopulations of HCC cells exhibiting activated ferroptosis and distinct gene expression patterns compared to normal tissues. Utilizing the LASSO-Cox algorithm, we constructed a model with 10 single-cell biomarkers associated with ferroptosis, namely STMN1, S100A10, FABP5, CAPG, RGCC, ENO1, ANXA5, UTRN, CXCR3, and ITM2A. Comprehensive analyses using these biomarkers revealed variations in immune infiltration, tumor mutation burden, drug sensitivity, and biological functional profiles between risk groups. Specific associations were established between particular immune cell subtypes and certain gene expression patterns. Treatment response analyses indicated potential benefits from anti-tumor immune therapy for the low-risk group and chemotherapy advantages for the high-risk group. CONCLUSIONS: The integration of this single-cell level model with clinicopathological features enabled accurate overall survival prediction and effective risk stratification in HCC patients. Our findings illuminate the potential of ferroptosis-related genes in tailoring therapy and prognosis prediction for HCC, offering novel insights into the intricate interplay among ferroptosis, immune response, and HCC progression.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Análise de Célula Única , Medicina de Precisão/métodos
2.
Nucleic Acids Res ; 52(D1): D990-D997, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37831073

RESUMO

Rare variants contribute significantly to the genetic causes of complex traits, as they can have much larger effects than common variants and account for much of the missing heritability in genome-wide association studies. The emergence of UK Biobank scale datasets and accurate gene-level rare variant-trait association testing methods have dramatically increased the number of rare variant associations that have been detected. However, no systematic collection of these associations has been carried out to date, especially at the gene level. To address the issue, we present the Rare Variant Association Repository (RAVAR), a comprehensive collection of rare variant associations. RAVAR includes 95 047 high-quality rare variant associations (76186 gene-level and 18 861 variant-level associations) for 4429 reported traits which are manually curated from 245 publications. RAVAR is the first resource to collect and curate published rare variant associations in an interactive web interface with integrated visualization, search, and download features. Detailed gene and SNP information are provided for each association, and users can conveniently search for related studies by exploring the EFO tree structure and interactive Manhattan plots. RAVAR could vastly improve the accessibility of rare variant studies. RAVAR is freely available for all users without login requirement at http://www.ravar.bio.


Assuntos
Bases de Dados Genéticas , Variação Genética , Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial , Fenótipo
3.
Comput Math Methods Med ; 2022: 4955555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836918

RESUMO

This study was aimed to explore the application of fuzzy C-means (FCM) algorithm in MR images of acquired immune deficiency syndrome (AIDS) patients. Sixty AIDS patients with central nervous disease were selected as the research object. A method of brain MR image segmentation based on FCM clustering optimization was proposed, and FCM was optimized based on the neighborhood pixel correlation of gray difference. The correlation was introduced into the objective function to obtain more accurate pixel membership and segmentation features of the image. The segmented image can retain the original image information. The proposed algorithm can clearly distinguish gray matter from white matter in images. The average time of image segmentation was 0.142 s, the longest time of level set algorithm was 2.887 s, and the running time of multithreshold algorithm was 1.708 s. FCM algorithm had the shortest running time, and the average time was significantly better than other algorithms (P < 0.05). FCM image segmentation efficiency was above 90%, and patients can clearly display the location of lesions after MRI imaging examination. In summary, FCM algorithm can effectively combine the spatial neighborhood information of the brain image, segment the BRAIN MR image, analyze the characteristics of AIDS patients from different directions, and provide effective treatment for patients.


Assuntos
Síndrome da Imunodeficiência Adquirida , Doenças do Sistema Nervoso Central , Síndrome da Imunodeficiência Adquirida/diagnóstico por imagem , Algoritmos , Análise por Conglomerados , Lógica Fuzzy , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Reconhecimento Automatizado de Padrão/métodos
4.
Bioengineered ; 13(5): 12650-12660, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35603884

RESUMO

Alcoholic liver disease (ALD) is a common clinical liver injury disease. Lactobacillus rhamnosus Gorbach-Goldin (LGG) has been revealed to alleviate alcohol-induced intestinal barrier and liver injury. However, the underlying mechanism of LGG treatment for ALD remains unclear. To clarify this aspect, a chronic plus binge ALD model was constructed using C57BL/6 mice in line with a chronic alcohol binge feeding protocol. Interleukin 22 (IL-22) level was determined by quantitative real-time polymerase-chain reaction and enzyme-linked immunosorbent assays. Effects of LGG in model or IL-22 knockdown in LGG-treated model on the liver injury and steatosis status, as well as intestinal barrier function were assessed by hematoxylin eosin (HE) staining. Levels of alanine aminotransferase (ALT), triglyceride (TG), and aspartate aminotransferase (AST) in serum were measured by the corresponding kit. Western blot analysis was conducted to detect protein expressions of intestinal tight junction protein 1 (ZO-1) and Claudin-1. Concretely, LGG elevated IL-22 level in liver tissues and serum, while inhibiting ALT, TG, and AST levels in alcohol-exposed mice. Moreover, LGG alleviated liver injury, steatosis, and intestinal barrier injury caused by alcohol, and enhanced ZO-1 and Claudin-1 expressions. Furthermore, IL-22 knockdown increased ALT, TG, and AST levels in serum, and aggravated liver injury, steatosis, and intestinal barrier injury. ZO-1 and Claudin-1 levels were downregulated by IL-22 silencing. Importantly, downregulation of IL-22 reversed the effect of LGG on the liver and intestinal barrier injury. To conclude, LGG protects against chronic alcohol-induced intestinal and liver injury via regulating the intestinal IL-22 signaling pathway.


Assuntos
Lacticaseibacillus rhamnosus , Hepatopatias Alcoólicas , Animais , Claudina-1/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Interleucinas/genética , Interleucinas/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Interleucina 22
5.
Toxicol Appl Pharmacol ; 439: 115923, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35176292

RESUMO

BACKGROUND: Intestinal epithelial barrier disruption and bacterial translocation exacerbates the progression of alcoholic liver disease. Lactobacillus rhamnosus GG (LGG), a probiotic, has been shown benefits in chronic liver disease and in regulating gut dysbiosis. Previous studies showed the protective roles of LGG in ethanol-disrupted gut barrier functions and liver injury. Inosine, a metabolite produced by intestinal bacteria, has the anti-inflammatory and immunregulatory functions. In this study, the synergistic effect of LGG and inosine was investigated in a mouse model of alcohol-induced liver disease (ALD). METHODS: Male C57BL/6 mice were fed with a Lieber-DeCarli diet containing 5% alcohol for four weeks to establish a model of alcohol-induced liver injury. LGG or a combination of LGG and inosine were administrated orally to explore a new therapeutic method for alcohol-induced liver disease and to investigate the underlying mechanisms. Liver damage was evaluated by transaminases and pathological changes. Tight junction proteins, composition of the gut microbiome, cytokines, lipopolysaccharides (LPS), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), F4/80+ macrophages, as well as p38, Jun N-terminal kinase (JNK), were determined by qRT-PCR, RNAseq, ELISA, IHC and western blot. Regulatory T (Treg) cells were characterized by positive staining of CD4, CD25 and Foxp3 using flow cytometry. IFN-γ-producing CD4+ T (Th1) cells were examined by intracellular cytokine staining. RESULTS: Alcohol consumption induced elevated liver enzymes, steatosis and inflammation, while LGG combined with inosine treatment was more significant to ameliorate these symptoms compared with LGG alone. When LGG combined with inosine were administered to ALD mice, intestinal microecology significantly improved reflected by intestinal villi and tight junction proteins recovery and the restoration of intestinal flora. Combined therapy inhibited phosphorylation of p38 and JNK to alleviate hepatic inflammation. Moreover, flow cytometry analysis showed that long-term excessive alcohol consumption reduced Tregs population while increased Th1 population, which was restored by a combination of LGG and inosine treatment. CONCLUSIONS: The findings from the study indicate that the combined LGG and inosine treatment ameliorates ALD by improving the gut ecosystem, intestinal barrier function, immune homeostasis and liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Lacticaseibacillus rhamnosus , Hepatopatias Alcoólicas , Animais , Ecossistema , Etanol/toxicidade , Inflamação , Inosina , Lacticaseibacillus rhamnosus/fisiologia , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th1 , Proteínas de Junções Íntimas
6.
Exp Ther Med ; 22(2): 807, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34093763

RESUMO

Melastoma dodecandrum Lour. (MDL) is component used in traditional Chinese medicine that is widely distributed throughout southern China. MDL has been long utilized in clinical treatment for various conditions, such as inflammation. However, the toxicity and underlying anti-inflammatory mechanism of MDL remain to be elucidated. In the present study, Sprague-Dawley rats received intragastric administration of MDL for 2 months, and the toxicity of MDL was investigated. The rats were treated with lipopolysaccharide (LPS) for 8 h to determine the potential anti-inflammatory mechanism of MDL. The results demonstrated that MDL alone did not affect the expression levels of factors associated with inflammation (IL-1ß, IL-6 and TNF-α) and oxidative stress [malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO)] in the rat serum and exerted no effects on rat liver and kidneys. By contrast, MDL attenuated LPS-induced inflammation and oxidative stress by regulating specific cytokines, such as IL-1ß, IL-6, TNF-α, MDA, SOD and NO in the rat serum and alleviated LPS-induced liver and kidney damage. Additionally, compared with the LPS group, MDL inhibited CD4+ T cell differentiation into Th1 and Th17 cells and enhanced CD4+ T cell differentiation into Th2 and Treg cells. MDL also suppressed reactive oxygen species (ROS) production and mitochondrial apoptosis by modulating mitochondrial apoptosis-related proteins in spleen CD4+ T cells. In conclusion, the results of the present study demonstrated the non-toxic nature of MDL and revealed that it alleviated LPS-induced inflammation and oxidative stress by regulating differentiation and ROS production in CD4+ T cells.

7.
Life Sci ; 280: 119698, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111466

RESUMO

AIMS: The purpose of this study was to investigate the effects of miR-431-5p on hepatocyte apoptosis in AIH. MATERIALS AND METHODS: We used intraperitoneal injection of S100 to establish AIH mouse model and injected AAV into tail vein on day 14 of modeling to regulate miR-431-5p expression. The expression of ALT, AST, IgG and apoptosis-related proteins Bax, Bcl-2 and cleaved caspase 3 were measured in each group. Cellular experiments were performed using miR-431-5p mimics or inhibitors to transfect LPS-stimulated AML12 cells, and apoptosis was verified using Western blot and Hoechst 33342/PI Double Staining. The target of miR-431-5p, KLF15, was screened using databases and verified by the luciferase reporter assay. The relationship between KLF15 and p53 was verified by si-KLF15 and PFTß (a p53-specific inhibitor). KEY FINDINGS: Here, we observed that the increase in the level of miR-431-5p was accompanied by a decrease in the expression of Krüppel-like zinc finger transcription factor 15 (KLF15). In addition, the deletion of miR-431-5p significantly reduced hepatocyte apoptosis in AIH mice induced by liver S100 and apoptosis of AML12 cells induced by LPS stimulation, accompanied by decreased expression of Bax and cleaved caspase-3 as well as increased expression of Bcl-2. Moreover, KLF15 was the direct and functional target of miR-431-5p. Furthermore, miR-431-5p negatively regulated the expression of KLF15, and KLF15 deletion partially abolished the inhibitory effect of miR-431-5p deletion on apoptosis by activating p53 signaling. SIGNIFICANCE: In summary, miR-431-5p may be a potential therapeutic target for AIH.


Assuntos
Apoptose , Hepatite Autoimune/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/patologia , MicroRNAs/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Hepatite Autoimune/etiologia , Hepatite Autoimune/patologia , Fatores de Transcrição Kruppel-Like/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Proteínas S100/efeitos adversos , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA