Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Small ; : e2302931, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525558

RESUMO

Combinations of chemotherapeutic agents comprise a clinically feasible approach to combat cancers that possess resistance to treatment. Type II endometrial cancer is typically associated with poor outcomes and the emergence of chemoresistance. To overcome this challenge, a combination therapy is developed comprising a novel ciprofloxacin derivative-loaded PEGylated polymeric nanoparticles (CIP2b-NPs) and paclitaxel (PTX) against human type-II endometrial cancer (Hec50co with loss of function p53). Cytotoxicity studies reveal strong synergy between CIP2b and PTX against Hec50co, and this is associated with a significant reduction in the IC50 of PTX and increased G2/M arrest. Upon formulation of CIP2b into PEGylated polymeric nanoparticles, tumor accumulation of CIP2b is significantly improved compared to its soluble counterpart; thus, enhancing the overall antitumor activity of CIP2b when co-administered with PTX. In addition, the co-delivery of CIP2b-NPs with paclitaxel results in a significant reduction in tumor progression. Histological examination of vital organs and blood chemistry was normal, confirming the absence of any apparent off-target toxicity. Thus, in a mouse model of human endometrial cancer, the combination of CIP2b-NPs and PTX exhibits superior therapeutic activity in targeting human type-II endometrial cancer.

2.
AAPS J ; 25(4): 57, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266761

RESUMO

Melanoma is the deadliest form of skin cancer and surgery is currently the most effective treatment. However, there are situations where surgery fails or is not an option to treat melanoma patients. Immunotherapy such as immune checkpoint blockade (e.g., anti-PD-1) can be effective as an alternative treatment for melanoma patients; however, the percentage of melanoma patients that exhibit complete responses from anti-PD-1 monotherapy is low, and a hostile immunosuppressive tumor microenvironment may be at least partly responsible. Resiquimod (RSQ) is an imidazoquinolinamine derivative and TLR-7/8 agonist that could enhance the antitumor activity of immune checkpoint blockade when these agents are combined as a treatment for melanoma. Here, the effect of combining systemic anti-PD-1 and locally administered RSQ on the survival of melanoma-challenged mice was tested. Our results demonstrated that anti-PD-1 in combination with RSQ can significantly prolong the survival of melanoma-challenged mice, compared to untreated mice and mice treated with anti-PD-1 alone. In addition, the in vitro studies showed that RSQ can mediate a direct anti-proliferative effect on melanoma cells. In conclusion, the combination of RSQ and anti-PD-1 may be a promising treatment for melanoma patients, especially as both treatments have already been used independently to safely treat melanoma patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Camundongos , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Imunoterapia/métodos , Microambiente Tumoral
3.
Int J Pharm ; 638: 122932, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37031810

RESUMO

Heterologous prime-boost vaccines have the potential to promote higher immune responses than homologous prime-boost vaccines and were used in this murine study to investigate the effect on the magnitude of the cellular (and humoral) antigen-specific immune responses and antitumor efficacy when a microparticle formulation (prime) is combined with an adenoviral vaccine (boost). Specifically, the prime comprised chick egg ovalbumin (OVA; 25 µg/dose), used here as a model tumor antigen (TA), encapsulated in microparticles (∼700 nm diameter) made from the biodegradable polymer, 50:50 poly(lactic-co-glycolic acid) (PLGA); while attenuated adenovirus (type 5) encoding OVA (Ad5OVA; 108 PFU/dose) was employed as the boost. The ability of OVA-loaded microparticles to enhance OVA-specific antibody responses, OVA-specific CD3 + CD8 + T cell responses and antitumor activity (i.e., protection against OVA-expressing tumor-challenge) to the heterologous prime-boost vaccine was investigated; and it was found that this prime-boost combination could significantly enhance OVA-specific cellular responses compared to all other vaccination groups and was the only group to confer a significant survival advantage over the unvaccinated group (naïve) in a prophylactic animal tumor model. This finding illustrates the potential for combining TA-loaded PLGA-based microparticles with other vaccine formats to improve tumor-specific cellular immune responses.


Assuntos
Neoplasias , Vacinas Virais , Camundongos , Animais , Adenoviridae/genética , Antígenos , Imunidade Celular
4.
Eur J Pharm Biopharm ; 183: 1-12, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36549400

RESUMO

Over the last decade, the potential for silver nanoparticles (AgNP) to be used as an anti-melanoma agent has been supported by both in vitro and in vivo evidence. However, an undesirably high concentration of AgNP is often required to achieve an antitumor effect. Therefore a combination treatment that can maintain or improve antitumor efficacy (with lower amounts of AgNP) while also reducing off-target effects is sought. In this study, the combination of AgNP and resiquimod (RSQ: a Toll-like receptor agonist) was investigated and shown to significantly prolong the survival of melanoma-challenged mice when added sequentially. Results from toxicity studies showed that the treatment was non-toxic in mice. Immune cell depletion studies suggested the possible involvement of CD8+ T cells in the antitumor response observed in the AgNP + RSQ (sequential) treatment. NanoString was also employed to further understand the mechanism underlying the increase in the treatment efficacy of AgNP + RSQ (sequential); showing significant changes, compared to the naive group, in gene expression in pathways involved in apoptosis and immune stimulation. In conclusion, the combination of AgNP and RSQ is a new combination worthy of further investigation in the context of melanoma treatment.


Assuntos
Melanoma , Nanopartículas Metálicas , Camundongos , Animais , Prata , Linfócitos T CD8-Positivos , Melanoma/tratamento farmacológico
5.
Pharmaceutics ; 14(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36297510

RESUMO

Melanoma is the most lethal form of skin cancer and surgery remains the preferred and most effective treatment. Nevertheless, there are cases where surgery is not a viable method and alternative treatments are therefore adopted. One such treatment that has been tested is topical 5% imiquimod (IMQ) cream, which, although showing promise as a treatment for melanoma, has been found to have undesirable off-target effects. Resiquimod (RSQ) is an immunomodulatory molecule that can activate immune responses by binding to Toll-like receptors (TLR) 7 and 8 and may be more effective than IMQ in the context of melanoma treatment. RSQ can cross the stratum corneum (SC) easily without requiring pretreatment of the skin. In a gel formulation, RSQ has been studied as a monotherapy and adjuvant for melanoma treatment in pre-clinical studies and as an adjuvant in clinical settings. Although side effects of RSQ in gel formulation were also reported, they were never severe enough for the treatment to be suspended. In this review, we discuss the potential use of RSQ as an adjuvant for melanoma treatment.

6.
Sci Adv ; 8(29): eabk3150, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857851

RESUMO

In clinical settings, cancer vaccines as monotherapies have displayed limited success compared to other cancer immunotherapeutic treatments. Nanoscale formulations have the ability to increase the efficacy of cancer vaccines by combatting the immunosuppressive nature of the tumor microenvironment. Here, we have synthesized a previously unexplored cationic polymeric nanoparticle formulation using polyamidoamine dendrimers and poly(d,l-lactic-co-glycolic acid) that demonstrate adjuvant properties in vivo. Tumor-challenged mice vaccinated with an adenovirus-based cancer vaccine [encoding tumor-associated antigen (TAA)] and subsequently treated with this nanoparticulate formulation showed significant increases in TAA-specific T cells in the peripheral blood, reduced tumor burden, protection against tumor rechallenge, and a significant increase in median survival. An investigation into cell-based pathways suggests that administration of the nanoformulation at the site of the developing tumor may have created an inflammatory environment that attracted activated TAA-specific CD8+ T cells to the vicinity of the tumor, thus enhancing the efficacy of the vaccine.

7.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216330

RESUMO

Selenium has been extensively evaluated clinically as a chemopreventive agent with variable results depending on the type and dose of selenium used. Selenium species are now being therapeutically evaluated as modulators of drug responses rather than as directly cytotoxic agents. In addition, recent data suggest an association between selenium base-line levels in blood and survival of patients with COVID-19. The major focus of this mini review was to summarize: the pathways of selenium metabolism; the results of selenium-based chemopreventive clinical trials; the potential for using selenium metabolites as therapeutic modulators of drug responses in cancer (clear-cell renal-cell carcinoma (ccRCC) in particular); and selenium usage alone or in combination with vaccines in the treatment of patients with COVID-19. Critical therapeutic targets and the potential role of different selenium species, doses, and schedules are discussed.


Assuntos
Tratamento Farmacológico da COVID-19 , Neoplasias/tratamento farmacológico , Selênio/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , COVID-19/virologia , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Selênio/química , Selênio/metabolismo , Selênio/farmacologia
8.
Methods Mol Biol ; 2455: 319-332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213004

RESUMO

Nonalcoholic steatohepatitis (NASH) is an aggressive liver disease that is considered a major cause of liver cirrhosis and hepatocellular carcinoma. NASH is characterized by multiple underlying genetic mutations, with no approved cure to date. Gene therapies that target those genetic mutations may play a major role in treating this disease, once delivered specifically to the hepatocytes. In this chapter we present, in detail, the synthesis and the characterization of an efficient gene delivery system capable of targeting hepatocytes by exploiting the overexpression of asialoglycoprotein receptors on their cell surface. The targeting ligand, galactose derivative, lactobionic acid (Gal), is first conjugated to bifunctional poly(ethylene glycol) (PEG), and then the formed PEG-Gal is further conjugated to the positively charged polymer, poly(amidoamine) (PAMAM) to form a PAMAM-PEG-Gal construct that can complex and deliver genetic material (e.g., pDNA, siRNA, mRNA) specifically to hepatocytes. We first synthesize PAMAM-PEG-Gal using carbodiimide click chemistry. The synthesized conjugate is characterized using 1H NMR spectroscopy and mass spectrometry. Next, nanoplexes are prepared by combining the positively charged conjugate and the negatively charged genetic material at different nitrogen to phosphate (N/P) ratios; then the size, charge, electrophoretic mobility, and surface morphology of those nanoplexes are estimated. The simplicity of complexing our conjugate with any type of genetic material, the ability of our delivery system to overcome the current limitations of delivering naked genetic material, and the efficiency of delivering its payload specifically to hepatocytes, makes our formulation a promising tool to treat any type of genetic abnormality that arises in hepatocytes, and specifically NASH.


Assuntos
Técnicas de Transferência de Genes , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Poliaminas/química , Polietilenoglicóis/química
9.
Drug Deliv Transl Res ; 12(7): 1684-1696, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34635984

RESUMO

Endometrial cancer is the most common gynecological cancer that affects the female reproductive organs. The standard therapy for EC for the past two decades has been chemotherapy and/or radiotherapy. PD98059 is a reversible MEK inhibitor that was found in these studies to increase the cytotoxicity of paclitaxel (PTX) against human endometrial cancer cells (Hec50co) in a synergistic and dose-dependent manner. Additionally, while PD98059 arrested Hec50co cells at the G0/G1 phase, and PTX increased accumulation of cells at the G2/M phase, the combination treatment increased accumulation at both the G0/G1 and G2/M phases at low PTX concentrations. We recently developed poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) modified with polyethylene glycol (PEG) and coated with polyamidoamine (PAMAM) (referred to here as PGM NPs) which have favorable biodistribution profiles in mice, compared to PD98059 solution. Here, in order to enhance tissue distribution of PD98059, PD98059-loaded PGM NPs were prepared and characterized. The average size, zeta potential, and % encapsulation efficiency (%EE) of these NPs was approximately 184 nm, + 18 mV, and 23%, respectively. The PD98059-loaded PGM NPs released ~ 25% of the total load within 3 days in vitro. In vivo murine studies revealed that the pharmacokinetics and biodistribution profile of intravenous (IV) injected PD98059 was improved when delivered as PD98059-loaded PGM NPs as opposed to soluble PD98059. Further investigation of the in vivo efficacy and safety of this formulation is expected to emphasize the potential of its clinical application in combination with commercial PTX formulations against different cancers.


Assuntos
Neoplasias do Endométrio , Nanopartículas , Animais , Linhagem Celular Tumoral , Portadores de Fármacos , Neoplasias do Endométrio/tratamento farmacológico , Feminino , Flavonoides , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Paclitaxel , Poliaminas , Polietilenoglicóis , Inibidores de Proteínas Quinases , Distribuição Tecidual
10.
Adv Ther (Weinh) ; 4(7)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34423112

RESUMO

Different tetrahydrobenzo[b]thiophene derivatives were explored as new tubulin polymerization destabilizers to arrest tumor cell mitosis. A series of compounds incorporating the tetrahydrobenzo[b]thiophene scaffold were synthesized, and their biological activities were investigated. The cytotoxicity of each of the synthesized compounds was assessed against a range of cell lines. Specifically, the benzyl urea tetrahydrobenzo[b]thiophene derivative, 1-benzyl-3-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)urea (BU17), was identified as the most potent compound with broad-spectrum antitumor activity against several cancer cell lines. The potential mechanism(s) of action were investigated where dose-dependent G2/M accumulation and A549 cell cycle arrest were detected. Additionally, A549 cells treated with BU17 expressed enhanced levels of caspase 3 and 9, indicating the induction of apoptosis. Furthermore, it was found that BU17 inhibits WEE1 kinase and targets tubulin by blocking its polymerization. BU17 was also formulated into PLGA nanoparticles, and it was demonstrated that BU17-loaded nanoparticles could significantly enhance antitumor activity compared to the soluble counterpart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA