RESUMO
We conducted a research study to create the groundwork for personalized solutions within a skin aging segment. This test utilizes genetic and general laboratory data to predict individual susceptibility to weak skin characteristics, leveraging the research on genetic polymorphisms related to skin functional properties. A cross-sectional study was conducted in a collaboration between the Private Clinic Medicina Practica Laboratory (Vilnius, Lithuania) and the Public Institution Lithuanian University of Health Sciences (Kaunas, Lithuania). A total of 370 participants agreed to participate in the project. The median age of the respondents was 40, with a range of 19 to 74 years. After the literature search, we selected 15 polymorphisms of the genes related to skin aging, which were subsequently categorized in terms of different skin functions: SOD2 (rs4880), GPX1 (rs1050450), NQO1 (rs1800566), CAT (rs1001179), TYR (rs1126809), SLC45A2 (rs26722), SLC45A2 (rs16891982), MMP1 (rs1799750), ELN (rs7787362), COL1A1 (rs1800012), AHR (rs2066853), IL6 (rs1800795), IL1Beta (rs1143634), TNF-α (rs1800629), and AQP3 (rs17553719). RT genotyping, blood count, and immunochemistry results were analyzed using statistical methods. The obtained results show significant associations between genotyping models and routine blood screens. These findings demonstrate the personalized medicine approach for the aging segment and further add to the growing literature. Further investigation is warranted to fully understand the complex interplay between genetic factors, environmental influences, and skin aging.
RESUMO
Extracellular vesicles (EVs) are attractive anticancer drug delivery candidates as they confer several fundamental properties, such as low immunogenicity and the ability to cross biological barriers. Mesenchymal stem cells (MSCs) are convenient producers for high EV yields, and patient-derived adipose tissue MSC-EVs could serve as personalised carriers. However, MSC-EV applications raise critical concerns as their natural cargo can affect tumour progression in both inducing and suppressing ways. In this study, we investigated the effect of adipose tissue-derived mesenchymal stem cell EVs (ASC-EVs) on several glioblastoma (GBM) cell lines to define their applicability for anticancer therapies. ASC-EVs were isolated from a cell-conditioned medium and characterised by size and specific markers. The internalisation of fluorescently labelled ASC-EVs by human GBM cells HROG36, U87 MG, and T98G was evaluated by fluorescent microscopy. Changes in GBM cell proliferation after ASC-EV application were determined by the metabolic PrestoBlue assay. Expression alterations in genes responsible for cell adhesion, proliferation, migration, and angiogenesis were evaluated by quantitative real-time PCR. ASC-EV effects on tumour invasiveness and neoangiogenesis in ovo were analysed on the chicken embryo chorioallantoic membrane model (CAM). ASC-EV treatment reduced GBM proliferation in vitro and significantly downregulated invasiveness-related genes ITGα5 (in T98G and HROG63) and ITGß3 (in HROG36) and the vascularisation-inducing gene KDR (in all GBM lines). Additionally, an approximate 65% reduction in the GBM invasion rate was observed in CAM after ASC-EV treatment. Our study indicates that ASC-EVs possess antitumour properties, reducing GBM cell proliferation and invasiveness, and can be applied as anticancer therapeutics and medicine carriers.
Assuntos
Vesículas Extracelulares , Glioblastoma , Embrião de Galinha , Animais , Humanos , Glioblastoma/metabolismo , Células-Tronco/metabolismo , Tecido Adiposo/metabolismo , Proliferação de Células , Vesículas Extracelulares/metabolismoRESUMO
Glioblastoma multiforme (GBM) is the most aggressive CNS tumour with no efficient treatment, partly due to the retention of anticancer drugs by the blood-brain barrier (BBB) and their insufficient concentration in tumour cells. Extracellular vesicles (EVs) are attractive drug carriers because of their biocompatibility and ability to cross the BBB. Additional efficiency can be achieved by adding GBM-cell-specific ligands. GBM cells overexpress integrins; thus, one of the most straightforward targeting strategies is to modify EVs with integrin-recognising molecules. This study investigated the therapeutic potential of genetically engineered EVs with elevated membrane levels of the integrin-binding peptide RGD (RGD-EVs) against GBM cells in vitro. For RGD-EV production, stable RGD-HEK 293FT cells were generated by using a pcDNA4/TO-Lamp2b-iRGD-HA expression vector and performing antibiotic-based selection. RGD-EVs were isolated from RGD-HEK 293FT-cell-conditioned medium and characterised by size (Zetasizer), specific markers (ELISA) and RGD expression (Western Blot). Internalisation by human GBM cells HROG36 and U87 MG and BJ-5ta human fibroblasts was assessed by fluorescent EV RNA labelling. The effect of doxorubicin-loaded RGD-EVs on GBM cells was evaluated by the metabolic PrestoBlue viability assay; functional GAPDH gene knockdown by RGD-EV-encapsulated siRNA was determined by RT-qPCR. RGD-EVs had 40% higher accumulation in GBM cells (but not in fibroblasts) and induced significantly stronger toxicity by loaded doxorubicin and GAPDH silencing by loaded siRNA compared to unmodified EVs. Thus, RGD modification substantially increases the specific delivery capacity of HEK 293FT-derived EVs to GBM cells.
RESUMO
SARS-CoV-2 has spread vastly throughout the word. In this study, we focus on the patterns of spread in Lithuania. By analysing the genetically sequenced data of different lineages and their first appearances, we were able to compare the dynamics of spreading of the lineages and recognize the main possible cause. The impact of emigration patterns and international travel on the variety of lineages was also assessed. Results showed different patterns of spread, and while a vast variety of different lineages were brought in by international travel, many of the viral outbreaks were caused by local lineages. It can be concluded that international travel had the most impact on the spread of SARS-CoV-2.