Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626776

RESUMO

Cannabis is a plant notorious for its psychoactive effect, but when used correctly, it provides a plethora of medicinal benefits. With more than 400 active compounds that have therapeutic properties, cannabis has been accepted widely as a medical treatment and for recreational purposes in several countries. The compounds exhibit various clinical benefits, which include, but are not limited to, anticancer, antimicrobial, and antioxidant properties. Among the vast range of compounds, multiple research papers have shown that cannabinoids, such as cannabidiol and delta-9-tetrahydrocannabinol, have antiviral effects. Recently, scientists found that both compounds can reduce severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral infection by downregulating ACE2 transcript levels and by exerting anti-inflammatory properties. These compounds also act as the SARS-CoV-2 main protease inhibitors that block viral replication. Apart from cannabinoids, terpenes in cannabis plants have also been widely explored for their antiviral properties. With particular emphasis on four different viruses, SARS-CoV-2, human immunodeficiency virus, hepatitis C virus, and herpes simplex virus-1, this review discussed the role of cannabis compounds in combating viral infections and the potential of both cannabinoids and terpenes as novel antiviral therapeutics.


Assuntos
COVID-19 , Canabinoides , Cannabis , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Terpenos/farmacologia
2.
Rev Med Virol ; 33(2): e2413, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36504273

RESUMO

Lipid rafts are ubiquitous in cells. They are identified as cholesterol and glycosphingolipid enriched microdomains on cellular membranes. They serve as platforms for cellular communications by functioning in signal transduction and membrane trafficking. Such structural organisation fulfils cellular needs for normal function, but at the same time increases vulnerability of cells to pathogen invasion. Viruses rely heavily on lipid rafts in basically every stage of the viral life cycle for successful infection. Various mechanisms of lipid rafts modification exploited by diverse viruses for attachment, internalisation, membrane fusion, genome replication, assembly and release have been brought to light. This review focuses on virus-raft interactions and how a wide range of viruses manipulate lipid rafts at distinct stages of infection. The importance of virus-raft interactions in viral infections has inspired researchers to discover and develop antivirals that target this interaction, such as statins, methyl-ß-cyclodextrin, viperin, 25-hydroxycholesterol and even anti-malarial drugs. The therapeutic modulations of lipid rafts as potential antiviral intervention from in vitro and in vivo evidence are discussed herein.


Assuntos
Antivirais , Microdomínios da Membrana , Humanos , Microdomínios da Membrana/química , Membrana Celular , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA