Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nat Commun ; 15(1): 414, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195569

RESUMO

Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) drives viral B cell transformation and oncogenesis. LMP1's transforming activity depends on its C-terminal activation region 2 (CTAR2), which induces NF-κB and JNK by engaging TNF receptor-associated factor 6 (TRAF6). The mechanism of TRAF6 recruitment to LMP1 and its role in LMP1 signalling remains elusive. Here we demonstrate that TRAF6 interacts directly with a viral TRAF6 binding motif within CTAR2. Functional and NMR studies supported by molecular modeling provide insight into the architecture of the LMP1-TRAF6 complex, which differs from that of CD40-TRAF6. The direct recruitment of TRAF6 to LMP1 is essential for NF-κB activation by CTAR2 and the survival of LMP1-driven lymphoma. Disruption of the LMP1-TRAF6 complex by inhibitory peptides interferes with the survival of EBV-transformed B cells. In this work, we identify LMP1-TRAF6 as a critical virus-host interface and validate this interaction as a potential therapeutic target in EBV-associated cancer.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma de Células B , Humanos , Herpesvirus Humano 4 , Fator 6 Associado a Receptor de TNF , Infecções por Vírus Epstein-Barr/complicações , NF-kappa B , Transformação Celular Neoplásica , Transformação Celular Viral
2.
Proc Natl Acad Sci U S A ; 120(48): e2309205120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988467

RESUMO

Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genetically rendered a single MALT1 substrate, the RNA-binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is translated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high-affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease-associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high-affinity Roquin-1 target IκBNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity.


Assuntos
Autoimunidade , Encefalomielite Autoimune Experimental , Camundongos , Animais , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Inflamação/metabolismo , Diferenciação Celular , Encefalomielite Autoimune Experimental/genética , Receptores de Antígenos de Linfócitos T/genética , Ubiquitina-Proteína Ligases
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628816

RESUMO

In the eye, an increase in galectin-1 is associated with various chorioretinal diseases, in which retinal pigment epithelium (RPE) cells play a crucial role in disease development and progression. Since little is known about the function of endogenous galectin-1 in these cells, we developed a galectin-1-deficient immortalized RPE cell line (ARPE-19-LGALS1-/-) using a sgRNA/Cas9 all-in-one expression vector and investigated its cell biological properties. Galectin-1 deficiency was confirmed by Western blot analysis and immunocytochemistry. Cell viability and proliferation were significantly decreased in ARPE-19-LGALS1-/- cells when compared to wild-type controls. Further on, an increased attachment of galectin-1-deficient RPE cells was observed by cell adhesion assay when compared to control cells. The diminished viability and proliferation, as well as the enhanced adhesion of galectin-1-deficient ARPE-19 cells, could be blocked, at least in part, by the additional treatment with human recombinant galectin-1. In addition, a significantly reduced migration was detected in ARPE-19-LGALS1-/- cells. In comparison to control cells, galectin-1-deficient RPE cells had enhanced expression of sm-α-actin and N-cadherin, whereas expression of E-cadherin showed no significant alteration. Finally, a compensatory expression of galectin-8 mRNA was observed in ARPE-19-LGALS1-/- cells. In conclusion, in RPE cells, endogenous galectin-1 has crucial functions for various cell biological processes, including viability, proliferation, migration, adherence, and retaining the epithelial phenotype.


Assuntos
Galectina 1 , RNA Guia de Sistemas CRISPR-Cas , Humanos , Galectina 1/genética , Actinas , Células Epiteliais , Pigmentos da Retina
4.
Nat Commun ; 14(1): 4233, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454201

RESUMO

The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.


Assuntos
Processamento Alternativo , RNA , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Motivos de Nucleotídeos , Splicing de RNA
5.
Pharmaceutics ; 15(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678896

RESUMO

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a relentlessly progressive neurodegenerative disorder caused by mutations in the C19orf12 gene. C19orf12 has been implicated in playing a role in lipid metabolism, mitochondrial function, and autophagy, however, the precise functions remain unknown. To identify new robust cellular targets for small compound treatments, we evaluated reported mitochondrial function alterations, cellular signaling, and autophagy in a large cohort of MPAN patients and control fibroblasts. We found no consistent alteration of mitochondrial functions or cellular signaling messengers in MPAN fibroblasts. In contrast, we found that autophagy initiation is consistently impaired in MPAN fibroblasts and show that C19orf12 expression correlates with the amount of LC3 puncta, an autophagy marker. Finally, we screened 14 different autophagy modulators to test which can restore this autophagy defect. Amongst these compounds, carbamazepine, ABT-737, LY294002, oridonin, and paroxetine could restore LC3 puncta in the MPAN fibroblasts, identifying them as novel potential therapeutic compounds to treat MPAN. In summary, our study confirms a role for C19orf12 in autophagy, proposes LC3 puncta as a functionally robust and consistent readout for testing compounds, and pinpoints potential therapeutic compounds for MPAN.

6.
Elife ; 112022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476511

RESUMO

Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.


Assuntos
Antraciclinas , NF-kappa B , Animais , Camundongos , Antraciclinas/farmacologia , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Dano ao DNA , DNA
7.
Sci Adv ; 8(31): eabp9153, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921415

RESUMO

Alternative splicing plays key roles for cell type-specific regulation of protein function. It is controlled by cis-regulatory RNA elements that are recognized by RNA binding proteins (RBPs). The MALT1 paracaspase is a key factor of signaling pathways that mediate innate and adaptive immune responses. Alternative splicing of MALT1 is critical for controlling optimal T cell activation. We demonstrate that MALT1 splicing depends on RNA structural elements that sequester the splice sites of the alternatively spliced exon7. The RBPs hnRNP U and hnRNP L bind competitively to stem-loop RNA structures that involve the 5' and 3' splice sites flanking exon7. While hnRNP U stabilizes RNA stem-loop conformations that maintain exon7 skipping, hnRNP L disrupts these RNA elements to facilitate recruitment of the essential splicing factor U2AF2, thereby promoting exon7 inclusion. Our data represent a paradigm for the control of splice site selection by differential RBP binding and modulation of pre-mRNA structure.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L , Precursores de RNA , Processamento Alternativo , Sítios de Ligação , Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Precursores de RNA/genética , Sítios de Splice de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
PLoS One ; 17(3): e0265805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320287

RESUMO

PURPOSE: Galectin-1 and -3 are ß-galactoside binding lectins with varying effects on angiogenesis and apoptosis. Since in retinal pigment epithelial cells high amounts of human recombinant galectin (hr-GAL)1 and 3 inhibit cell adhesion, migration and proliferation, we investigated if hr-GAL1 and 3 have homologous effects on human retinal microvascular endothelial cells (HRMEC) in vitro. METHODS: To investigate the effect of galectin-1 and -3 on HRMEC, proliferation, apoptosis and viability were analyzed after incubation with 30, 60 and 120 µg/ml hr-GAL1 or 3 by BrdU-ELISA, histone-DNA complex ELISA, live/dead staining and the WST-1 assay, respectively. Further on, a cell adhesion as well as tube formation assay were performed on galectin-treated HRMEC. Migration was investigated by the scratch migration assay and time-lapse microscopy. In addition, immunohistochemical staining on HRMEC for ß-catenin, galectin-1 and -3 were performed and ß-catenin expression was investigated by western blot analysis. RESULTS: Incubation with hr-GAL1 or 3 lead to a decrease in proliferation, migration, adhesion and tube formation of HRMEC compared to the untreated controls. No toxic effects of hr-GAL1 and 3 on HRMEC were detected. Intriguingly, after treatment of HRMEC with hr-GAL1 or 3, an activation of the proangiogenic Wnt/ß-catenin signaling pathway was observed. However, incubation of HRMEC with hr-GAL1 or 3 drew intracellular galectin-1 and -3 out of the cells, respectively. CONCLUSION: Exogenously added hr-GAL1 or 3 inhibit angiogenic properties of HRMEC in vitro, an effect that might be mediated via a loss of intracellular endogenous galectins.


Assuntos
Galectina 1 , beta Catenina , Células Endoteliais/metabolismo , Galectina 1/metabolismo , Galectina 1/farmacologia , Galectinas , Humanos , Neovascularização Patológica/genética , beta Catenina/metabolismo
9.
J Neurosci ; 42(8): 1557-1573, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34965974

RESUMO

Collagen VI is a key component of muscle basement membranes, and genetic variants can cause monogenic muscular dystrophies. Conversely, human genetic studies recently implicated collagen VI in central nervous system function, with variants causing the movement disorder dystonia. To elucidate the neurophysiological role of collagen VI, we generated mice with a truncation of the dystonia-related collagen α3 VI (COL6A3) C-terminal domain (CTD). These Col6a3CTT mice showed a recessive dystonia-like phenotype in both sexes. We found that COL6A3 interacts with the cannabinoid receptor 1 (CB1R) complex in a CTD-dependent manner. Col6a3CTT mice of both sexes have impaired homeostasis of excitatory input to the basal pontine nuclei (BPN), a motor control hub with dense COL6A3 expression, consistent with deficient endocannabinoid (eCB) signaling. Aberrant synaptic input in the BPN was normalized by a CB1R agonist, and motor performance in Col6a3CTT mice of both sexes was improved by CB1R agonist treatment. Our findings identify a readily therapeutically addressable synaptic mechanism for motor control.SIGNIFICANCE STATEMENT Dystonia is a movement disorder characterized by involuntary movements. We previously identified genetic variants affecting a specific domain of the COL6A3 protein as a cause of dystonia. Here, we created mice lacking the affected domain and observed an analogous movement disorder. Using a protein interaction screen, we found that the affected COL6A3 domain mediates an interaction with the cannabinoid receptor 1 (CB1R). Concordantly, our COL6A3-deficient mice showed a deficit in synaptic plasticity linked to a deficit in cannabinoid signaling. Pharmacological cannabinoid augmentation rescued the motor impairment of the mice. Thus, cannabinoid augmentation could be a promising avenue for treating dystonia, and we have identified a possible molecular mechanism mediating this.


Assuntos
Canabinoides , Colágeno Tipo VI , Distonia , Distúrbios Distônicos , Neurônios Motores , Plasticidade Neuronal , Animais , Canabinoides/metabolismo , Canabinoides/farmacologia , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Distonia/genética , Distonia/metabolismo , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Feminino , Masculino , Camundongos , Neurônios Motores/efeitos dos fármacos , Mutação , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo
10.
Nat Commun ; 12(1): 5208, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471108

RESUMO

Post-transcriptional gene regulation in T cells is dynamic and complex as targeted transcripts respond to various factors. This is evident for the Icos mRNA encoding an essential costimulatory receptor that is regulated by several RNA-binding proteins (RBP), including Roquin-1 and Roquin-2. Here, we identify a core RBPome of 798 mouse and 801 human T cell proteins by utilizing global RNA interactome capture (RNA-IC) and orthogonal organic phase separation (OOPS). The RBPome includes Stat1, Stat4 and Vav1 proteins suggesting unexpected functions for these transcription factors and signal transducers. Based on proximity to Roquin-1, we select ~50 RBPs for testing coregulation of Roquin-1/2 targets by induced expression in wild-type or Roquin-1/2-deficient T cells. Besides Roquin-independent contributions from Rbms1 and Cpeb4 we also show Roquin-1/2-dependent and target-specific coregulation of Icos by Celf1 and Igf2bp3. Connecting the cellular RBPome in a post-transcriptional context, we find contributions from multiple RBPs to the prototypic regulation of mRNA targets by individual trans-acting factors.


Assuntos
RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Camundongos , Proteínas Proto-Oncogênicas c-vav , Fator de Transcrição STAT1 , Fator de Transcrição STAT4 , Transdução de Sinais , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
EMBO Rep ; 22(6): e49568, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33969602

RESUMO

Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Interferons can diminish HBV cccDNA via APOBEC3-mediated deamination. Here, we show that overexpression of APOBEC3A alone is not sufficient to reduce HBV cccDNA that requires additional treatment of cells with interferon indicating involvement of an interferon-stimulated gene (ISG) in cccDNA degradation. Transcriptome analyses identify ISG20 as the only type I and II interferon-induced, nuclear protein with annotated nuclease activity. ISG20 localizes to nucleoli of interferon-stimulated hepatocytes and is enriched on deoxyuridine-containing single-stranded DNA that mimics transcriptionally active, APOBEC3A-deaminated HBV DNA. ISG20 expression is detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion mitigates the interferon-induced loss of cccDNA, and co-expression with APOBEC3A is sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires the concerted action of a deaminase and a nuclease. Our findings highlight that ISGs may cooperate in their antiviral activity that may be explored for therapeutic targeting.


Assuntos
DNA Circular , Vírus da Hepatite B , Antivirais/farmacologia , Citidina Desaminase , DNA Circular/genética , DNA Viral/genética , DNA Viral/farmacologia , Exorribonucleases , Vírus da Hepatite B/genética , Humanos , Interferons , Proteínas , Replicação Viral
12.
Nat Commun ; 12(1): 2999, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016966

RESUMO

The proper functional interaction between different tissues represents a key component in systemic metabolic control. Indeed, disruption of endocrine inter-tissue communication is a hallmark of severe metabolic dysfunction in obesity and diabetes. Here, we show that the FNDC4-GPR116, liver-white adipose tissue endocrine axis controls glucose homeostasis. We found that the liver primarily controlled the circulating levels of soluble FNDC4 (sFNDC4) and lowering of the hepatokine FNDC4 led to prediabetes in mice. Further, we identified the orphan adhesion GPCR GPR116 as a receptor of sFNDC4 in the white adipose tissue. Upon direct and high affinity binding of sFNDC4 to GPR116, sFNDC4 promoted insulin signaling and insulin-mediated glucose uptake in white adipocytes. Indeed, supplementation with FcsFNDC4 in prediabetic mice improved glucose tolerance and inflammatory markers in a white-adipocyte selective and GPR116-dependent manner. Of note, the sFNDC4-GPR116, liver-adipose tissue axis was dampened in (pre) diabetic human patients. Thus our findings will now allow for harnessing this endocrine circuit for alternative therapeutic strategies in obesity-related pre-diabetes.


Assuntos
Tecido Adiposo Branco/metabolismo , Proteínas de Membrana/metabolismo , Estado Pré-Diabético/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Adolescente , Adulto , Idoso , Animais , Células CHO , Estudos de Coortes , Cricetulus , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Insulina/metabolismo , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Células NIH 3T3 , Estado Pré-Diabético/sangue , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/etiologia , Cultura Primária de Células , Proteínas/análise , Receptores Acoplados a Proteínas G/sangue , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Adulto Jovem
13.
EMBO Rep ; 22(3): e51009, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33512761

RESUMO

Histone post-translational modifications (PTMs) are key players in chromatin regulation. The identification of novel histone acylations raises important questions regarding their role in transcription. In this study, we characterize the role of an acylation on the lateral surface of the histone octamer, H3K122 succinylation (H3K122succ), in chromatin function and transcription. Using chromatin succinylated at H3K122 in in vitro transcription assays, we show that the presence of H3K122succ is sufficient to stimulate transcription. In line with this, we found in our ChIP assays H3K122succ enriched on promoters of active genes and H3K122succ enrichment scaling with gene expression levels. Furthermore, we show that the co-activators p300/CBP can succinylate H3K122 and identify sirtuin 5 (SIRT5) as a new desuccinylase. By applying single molecule FRET assays, we demonstrate a direct effect of H3K122succ on nucleosome stability, indicating an important role for histone succinylation in modulating chromatin dynamics. Together, these data provide the first insights into the mechanisms underlying transcriptional regulation by H3K122succ.


Assuntos
Histonas , Nucleossomos , Cromatina/genética , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Processamento de Proteína Pós-Traducional
14.
Stem Cell Res ; 50: 102126, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33373890

RESUMO

The peptide hormone insulin produced by pancreatic ß-cells undergoes post-transcriptional processing before secretion. In particular, C-peptide is cleaved from pro-insulin to generate mature insulin. Here, we introduce a C-peptide-mCherry human iPSC line (HMGUi001-A-8). The line was generated by CRISPR/Cas9 mediated heterozygous insertion of the mCherry sequence into exon 3 of the insulin locus. We demonstrate that the line is pluripotent and efficiently differentiates towards pancreatic ß-like cells, which localize a red fluorescent C-peptide-mCherry fusion protein in insulin containing granules. Hence, the HMGUi001-A-8 line is a valuable resource to purify derived ß-like cells and follow insulin-containing granules in real time.

15.
Sci Adv ; 6(42)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33055165

RESUMO

Polyubiquitin chains are flexible multidomain proteins, whose conformational dynamics enable them to regulate multiple biological pathways. Their dynamic is determined by the linkage between ubiquitins and by the number of ubiquitin units. Characterizing polyubiquitin behavior as a function of their length is hampered because of increasing system size and conformational variability. Here, we introduce a new approach to efficiently integrating small-angle x-ray scattering with simulations allowing us to accurately characterize the dynamics of linear di-, tri-, and tetraubiquitin in the free state as well as of diubiquitin in complex with NEMO, a central regulator in the NF-κB pathway. Our results show that the behavior of the diubiquitin subunits is independent of the presence of additional ubiquitin modules and that the dynamics of polyubiquitins with different lengths follow a simple model. Together with experimental data from multiple biophysical techniques, we then rationalize the 2:1 NEMO:polyubiquitin binding.

16.
Autophagy ; 16(12): 2294-2296, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33054575

RESUMO

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression which act by guiding AGO (argonaute) proteins to target RNA transcripts in the RNA-induced silencing complex (RISC). This macromolecular complex includes multiple additional components (e.g., TNRC6A) that allow for interaction with enzymes mediating inhibition of translation or RNA decay. However, miRNAs also reside in low-molecular weight complexes without being engaged in target repression, and their function in this context is largely unknown. Our recent findings show that endothelial cells exposed to protective high-shear stress or MTORC inhibition activate the macroautophagy/autophagy machinery to sustain viability by promoting differential trafficking of MIR126 strands and by enabling unconventional features of MIR126-5p. Whereas MIR126-3p is degraded upon autophagy activation, MIR126-5p interacts with the RNA-binding protein MEX3A to form a ternary complex with AGO2. This complex forms on the autophagosomal surface and facilitates its nuclear localization. Once in the nucleus, MIR126-5p dissociates from AGO2 and establishes aptamer-like interactions with the effector CASP3 (caspase 3). The binding to MIR126-5p prevents dimerization and proper active site formation of CASP3, thus inhibiting proteolytic activity and limiting apoptosis. Disrupting this pathway in vivo by genetic deletion of Mex3a or by specific deficiency of endothelial autophagy aggravates endothelial apoptosis and exacerbates the progression of atherosclerosis. The direct inhibition of CASP3 by MIR126-5p reveals a non-canonical mechanism by which miRNAs can modulate protein function and mediate the autophagy-apoptosis crosstalk.


Assuntos
Aterosclerose , MicroRNAs , Autofagia/genética , Caspase 3 , Células Endoteliais , Humanos , MicroRNAs/genética
17.
EMBO J ; 39(16): e103373, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32627867

RESUMO

TMF1-regulated nuclear protein 1 (Trnp1) has been shown to exert potent roles in neural development affecting neural stem cell self-renewal and brain folding, but its molecular function in the nucleus is still unknown. Here, we show that Trnp1 is a low complexity protein with the capacity to phase separate. Trnp1 interacts with factors located in several nuclear membrane-less organelles, the nucleolus, nuclear speckles, and condensed chromatin. Importantly, Trnp1 co-regulates the architecture and function of these nuclear compartments in vitro and in the developing brain in vivo. Deletion of a highly conserved region in the N-terminal intrinsic disordered region abolishes the capacity of Trnp1 to regulate nucleoli and heterochromatin size, proliferation, and M-phase length; decreases the capacity to phase separate; and abrogates most of Trnp1 protein interactions. Thus, we identified Trnp1 as a novel regulator of several nuclear membrane-less compartments, a function important to maintain cells in a self-renewing proliferative state.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neurais/metabolismo , Membrana Nuclear/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Camundongos , Membrana Nuclear/genética , Domínios Proteicos
18.
Sci Transl Med ; 12(546)2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493793

RESUMO

MicroRNAs (miRNAs) are versatile regulators of gene expression with profound implications for human disease including atherosclerosis, but whether they can exert posttranslational functions to control cell adaptation and whether such noncanonical features harbor pathophysiological relevance is unknown. Here, we show that miR-126-5p sustains endothelial integrity in the context of high shear stress and autophagy. Bound to argonaute-2 (Ago2), miR-126-5p forms a complex with Mex3a, which occurs on the surface of autophagic vesicles and guides its transport into the nucleus. Mutational studies and biophysical measurements demonstrate that Mex3a binds to the central U- and G-rich regions of miR-126-5p with nanomolar affinity via its two K homology domains. In the nucleus, miR-126-5p dissociates from Ago2 and binds to caspase-3 in an aptamer-like fashion with its seed sequence, preventing dimerization of the caspase and inhibiting its activity to limit apoptosis. The antiapoptotic effect of miR-126-5p outside of the RNA-induced silencing complex is important for endothelial integrity under conditions of high shear stress promoting autophagy: ablation of Mex3a or ATG5 in vivo attenuates nuclear import of miR-126-5p, aggravates endothelial apoptosis, and exacerbates atherosclerosis. In human plaques, we found reduced nuclear miR-126-5p and active caspase-3 in areas of disturbed flow. The direct inhibition of caspase-3 by nuclear miR-126-5p reveals a noncanonical mechanism by which miRNAs can modulate protein function.


Assuntos
Aterosclerose , MicroRNAs , Apoptose , Aterosclerose/genética , Autofagia , Caspase 3 , Humanos , MicroRNAs/genética
19.
Sci Transl Med ; 12(540)2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321863

RESUMO

Eicosanoids are key mediators of type-2 inflammation, e.g., in allergy and asthma. Helminth products have been suggested as remedies against inflammatory diseases, but their effects on eicosanoids are unknown. Here, we show that larval products of the helminth Heligmosomoides polygyrus bakeri (HpbE), known to modulate type-2 responses, trigger a broad anti-inflammatory eicosanoid shift by suppressing the 5-lipoxygenase pathway, but inducing the cyclooxygenase (COX) pathway. In human macrophages and granulocytes, the HpbE-driven induction of the COX pathway resulted in the production of anti-inflammatory mediators [e.g., prostaglandin E2 (PGE2) and IL-10] and suppressed chemotaxis. HpbE also abrogated the chemotaxis of granulocytes from patients suffering from aspirin-exacerbated respiratory disease (AERD), a severe type-2 inflammatory condition. Intranasal treatment with HpbE extract attenuated allergic airway inflammation in mice, and intranasal transfer of HpbE-conditioned macrophages led to reduced airway eosinophilia in a COX/PGE2-dependent fashion. The induction of regulatory mediators in macrophages depended on p38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor-1α (HIF-1α), and Hpb glutamate dehydrogenase (GDH), which we identify as a major immunoregulatory protein in HpbE Hpb GDH activity was required for anti-inflammatory effects of HpbE in macrophages, and local administration of recombinant Hpb GDH to the airways abrogated allergic airway inflammation in mice. Thus, a metabolic enzyme present in helminth larvae can suppress type-2 inflammation by inducing an anti-inflammatory eicosanoid switch, which has important implications for the therapy of allergy and asthma.


Assuntos
Eicosanoides , Helmintos , Animais , Anti-Inflamatórios , Ciclo-Oxigenase 2 , Humanos , Inflamação , Larva , Camundongos
20.
J Exp Med ; 216(7): 1700-1723, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126966

RESUMO

The RNase Regnase-1 is a master RNA regulator in macrophages and T cells that degrades cellular and viral RNA upon NF-κB signaling. The roles of its family members, however, remain largely unknown. Here, we analyzed Regnase-3-deficient mice, which develop hypertrophic lymph nodes. We used various mice with immune cell-specific deletions of Regnase-3 to demonstrate that Regnase-3 acts specifically within myeloid cells. Regnase-3 deficiency systemically increased IFN signaling, which increased the proportion of immature B and innate immune cells, and suppressed follicle and germinal center formation. Expression analysis revealed that Regnase-3 and Regnase-1 share protein degradation pathways. Unlike Regnase-1, Regnase-3 expression is high specifically in macrophages and is transcriptionally controlled by IFN signaling. Although direct targets in macrophages remain unknown, Regnase-3 can bind, degrade, and regulate mRNAs, such as Zc3h12a (Regnase-1), in vitro. These data indicate that Regnase-3, like Regnase-1, is an RNase essential for immune homeostasis but has diverged as key regulator in the IFN pathway in macrophages.


Assuntos
Homeostase/imunologia , Imunidade Inata , Interferons/metabolismo , Células Mieloides/metabolismo , Ribonucleases/metabolismo , Regiões 3' não Traduzidas , Animais , Autoimunidade , Linfócitos B/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/enzimologia , Reação em Cadeia da Polimerase em Tempo Real , Ribonucleases/genética , Transdução de Sinais , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA