Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 51(5): 3421-3436, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38214395

RESUMO

BACKGROUND: Preclinical research and organ-dedicated applications use and require high (spatial-)resolution positron emission tomography (PET) detectors to visualize small structures (early) and understand biological processes at a finer level of detail. Researchers seeking to improve detector and image spatial resolution have explored various detector designs. Current commercial high-resolution systems often employ finely pixelated or monolithic scintillators, each with its limitations. PURPOSE: We present a semi-monolithic detector, tailored for high-resolution PET applications with a spatial resolution in the range of 1 mm or better, merging concepts of monolithic and pixelated crystals. The detector features LYSO slabs measuring (24 × 10 × 1) mm3, coupled to a 12 × 12 readout channel photosensor with 4 mm pitch. The slabs are grouped in two arrays of 44 slabs each to achieve a higher optical photon density despite the fine segmentation. METHODS: We employ a fan beam collimator for fast calibration to train machine-learning-based positioning models for all three dimensions, including slab identification and depth-of-interaction (DOI), utilizing gradient tree boosting (GTB). The data for all dimensions was acquired in less than 2 h. Energy calculation was based on a position-dependent energy calibration. Using an analytical timing calibration, time skews were corrected for coincidence timing resolution (CTR) estimation. RESULTS: Leveraging machine-learning-based calibration in all three dimensions, we achieved high detector spatial resolution: down to 1.18 mm full width at half maximum (FWHM) detector spatial resolution and 0.75 mm mean absolute error (MAE) in the planar-monolithic direction, and 2.14 mm FWHM and 1.03 mm MAE for DOI at an energy window of (435-585) keV. Correct slab interaction identification in planar-segmented direction exceeded 80%, alongside an energy resolution of 12.7% and a CTR of 450 ps FWHM. CONCLUSIONS: The introduced finely segmented, high-resolution slab detector demonstrates appealing performance characteristics suitable for high-resolution PET applications. The current benchtop-based detector calibration routine allows these detectors to be used in PET systems.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/instrumentação , Desenho de Equipamento , Processamento de Imagem Assistida por Computador/métodos , Calibragem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA