Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12675, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879365

RESUMO

The Active Allothetic Place Avoidance task is an alternative setup to Morris Water Maze that allows studying spatial memory in a dynamic world in the presence of conflicting information. In this task, a rat, freely moving on a rotating circular arena, has to avoid a sector defined within the room frame where shocks are presented. While for Morris Water Maze several studies have identified animal strategies which specifically affect performance, there were no such studies for the Active Allothetic Place Avoidance task. Using standard machine learning methods, we were able to reveal for the first time, to the best of our knowledge, explainable strategies that the animals employ in this task and demonstrate that they can provide a high-level interpretation for performance differences between an animal group treated with silver nanoparticles (AgNPs) and the control group.


Assuntos
Aprendizagem da Esquiva , Nanopartículas Metálicas , Animais , Aprendizagem em Labirinto , Ratos , Ratos Long-Evans , Prata , Memória Espacial
2.
Sci Rep ; 8(1): 15089, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305680

RESUMO

The Morris Water Maze is commonly used in behavioural neuroscience for the study of spatial learning with rodents. Over the years, various methods of analysing rodent data collected during this task have been proposed. These methods span from classical performance measurements to more sophisticated categorisation techniques which classify the animal swimming path into behavioural classes known as exploration strategies. Classification techniques provide additional insight into the different types of animal behaviours but still only a limited number of studies utilise them. This is primarily because they depend highly on machine learning knowledge. We have previously demonstrated that the animals implement various strategies and that classifying entire trajectories can lead to the loss of important information. In this work, we have developed a generalised and robust classification methodology to boost classification performance and nullify the need for manual tuning. We have also made available an open-source software based on this methodology.


Assuntos
Aprendizagem em Labirinto/fisiologia , Natação/fisiologia , Algoritmos , Animais , Comportamento Animal , Ratos , Software
3.
Sci Rep ; 5: 14562, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26423140

RESUMO

The Morris Water Maze is a widely used task in studies of spatial learning with rodents. Classical performance measures of animals in the Morris Water Maze include the escape latency, and the cumulative distance to the platform. Other methods focus on classifying trajectory patterns to stereotypical classes representing different animal strategies. However, these approaches typically consider trajectories as a whole, and as a consequence they assign one full trajectory to one class, whereas animals often switch between these strategies, and their corresponding classes, within a single trial. To this end, we take a different approach: we look for segments of diverse animal behaviour within one trial and employ a semi-automated classification method for identifying the various strategies exhibited by the animals within a trial. Our method allows us to reveal significant and systematic differences in the exploration strategies of two animal groups (stressed, non-stressed), that would be unobserved by earlier methods.


Assuntos
Reação de Fuga/classificação , Animais , Aprendizagem em Labirinto , Ratos , Estresse Psicológico/fisiopatologia , Natação
4.
Artigo em Inglês | MEDLINE | ID: mdl-26737215

RESUMO

Technological advances of Multielectrode Arrays (MEAs) used for multisite, parallel electrophysiological recordings, lead to an ever increasing amount of raw data being generated. Arrays with hundreds up to a few thousands of electrodes are slowly seeing widespread use and the expectation is that more sophisticated arrays will become available in the near future. In order to process the large data volumes resulting from MEA recordings there is a pressing need for new software tools able to process many data channels in parallel. Here we present a new tool for processing MEA data recordings that makes use of new programming paradigms and recent technology developments to unleash the power of modern highly parallel hardware, such as multi-core CPUs with vector instruction sets or GPGPUs. Our tool builds on and complements existing MEA data analysis packages. It shows high scalability and can be used to speed up some performance critical pre-processing steps such as data filtering and spike detection, helping to make the analysis of larger data sets tractable.


Assuntos
Eletrodos , Fenômenos Eletrofisiológicos , Análise em Microsséries/métodos , Software , Animais , Humanos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA