Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Fungi (Basel) ; 8(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36294556

RESUMO

The industrially important non-conventional yeast Komagataella phaffii suffers from low rates of homologous recombination, making site specific genetic engineering tedious. Therefore, genome editing using CRISPR/Cas represents a simple and efficient alternative. To characterize on- and off-target mutations caused by CRISPR/Cas9 followed by non-homologous end joining repair, we chose a diverse set of CRISPR/Cas targets and conducted whole genome sequencing on 146 CRISPR/Cas9 engineered single colonies. We compared the outcomes of single target CRISPR transformations to double target experiments. Furthermore, we examined the extent of possible large deletions by targeting a large genomic region, which is likely to be non-essential. The analysis of on-target mutations showed an unexpectedly high number of large deletions and chromosomal rearrangements at the CRISPR target loci. We also observed an increase of on-target structural variants in double target experiments as compared to single target experiments. Targeting of two loci within a putatively non-essential region led to a truncation of chromosome 3 at the target locus in multiple cases, causing the deletion of 20 genes and several ribosomal DNA repeats. The identified de novo off-target mutations were rare and randomly distributed, with no apparent connection to unspecific CRISPR/Cas9 off-target binding sites.

3.
Biotechnol Adv ; 40: 107520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31981600

RESUMO

Competitive sustainable production in industry demands new and better biocatalysts, optimized bioprocesses and cost-effective product recovery. Our review sheds light on the progress made for the individual steps towards these goals, starting with the discovery of new enzymes and their corresponding genes. The enzymes are subsequently engineered to improve their performance, combined in reaction cascades to expand the reaction scope and integrated in whole cells to provide an optimal environment for the bioconversion. Strain engineering using synthetic biology methods tunes the host for production, reaction design optimizes the reaction conditions and downstream processing ensures the efficient recovery of commercially viable products. Selected examples illustrate how modified enzymes can revolutionize future-oriented applications ranging from the bioproduction of bulk-, specialty- and fine chemicals, active pharmaceutical ingredients and carbohydrates, over the conversion of the greenhouse-gas CO2 into valuable products and biocontrol in agriculture, to recycling of synthetic polymers and recovery of precious metals.


Assuntos
Biologia Sintética , Biocatálise , Enzimas , Compostos Orgânicos
4.
Nat Commun ; 9(1): 4566, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374035

RESUMO

The original version of this Article was updated after publication to add the ORCID ID of the author Thomas Vogl, which was inadvertently omitted, and to include a corrected version of the 'Description of Additional Supplementary Files' which originally lacked legends for each file.

5.
Nat Commun ; 9(1): 3589, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181586

RESUMO

Numerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization. Here, motivated by nature's use of bidirectional promoters (BDPs) as a solution for efficient gene co-expression, we generate a library of 168 synthetic BDPs in the yeast Komagataella phaffii (syn. Pichia pastoris), leveraging naturally occurring BDPs as a parts repository. This library of synthetic BDPs allows for rapid screening of diverse expression profiles and ratios to optimize gene co-expression, including for metabolic pathways (taxadiene, ß-carotene). The modular design strategies applied for creating the BDP library could be relevant in other eukaryotic hosts, enabling a myriad of metabolic engineering and synthetic biology applications.


Assuntos
Engenharia Genética/métodos , Pichia/genética , Regiões Promotoras Genéticas , Alcenos/metabolismo , Citocromo P-450 CYP2D6/genética , Diterpenos/metabolismo , Farnesiltranstransferase/genética , Regulação Fúngica da Expressão Gênica , Histonas/genética , Microrganismos Geneticamente Modificados , Pichia/metabolismo , beta Caroteno/genética , beta Caroteno/metabolismo
6.
Angew Chem Int Ed Engl ; 57(41): 13406-13423, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-29600541

RESUMO

Human enzymes have been widely studied in various disciplines. The number of reactions taking place in the human body is vast, and so is the number of potential catalysts for synthesis. Herein, we focus on the application of human enzymes that catalyze chemical reactions in course of the metabolism of drugs and xenobiotics. Some of these reactions have been explored on the preparative scale. The major field of application of human enzymes is currently drug development, where they are applied for the synthesis of drug metabolites.


Assuntos
Enzimas/metabolismo , Humanos
7.
Biotechnol Bioeng ; 115(4): 1037-1050, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29280481

RESUMO

Carbon source regulated promoters are well-studied standard tools for controlling gene expression. Acquiring control over the natural regulation of promoters is important for metabolic engineering and synthetic biology applications. In the commonly used protein production host Komagataella phaffii (Pichia pastoris), methanol-inducible promoters are used because of their tight regulation and exceptional strength. Yet, induction with toxic and flammable methanol can be a considerable safety risk and cannot be applied in many existing fermentation plants. Here we studied new regulatory circuits based on the most frequently used alcohol oxidase 1 promoter (PAOX1 ), which is tightly repressed in presence of repressing carbon sources and strongly induced by methanol. We compared different overexpression strategies for putative carbon source dependent regulators identified by a homology search in related yeasts and previously published literature in order to convert existing methanol dependent expression strains into methanol free systems. While constitutive overexpression showed only marginal or detrimental effects, derepressed expression (activated when the repressing carbon source is depleted) showed that three transcription factors (TFs) are single handedly suitable to strongly activate PAOX1 in P. pastoris without relying on any specifically engineered host strains. Transcriptome analyses demonstrated that Mxr1, Mit1, and Prm1 regulate partly overlapping and unique sets of genes. Derepressed overexpression of a single TF was sufficient to retrofit existing PAOX1 based expression strains into glucose/glycerol regulated, methanol-free systems. Given the wide applicability of carbon source regulated promoters, the simplicity and low cost of controlling carbon source feed rates in large scale bioreactors, similar approaches as in P. pastoris may also be useful in other organisms.


Assuntos
Proteínas Fúngicas/metabolismo , Metanol/metabolismo , Pichia/enzimologia , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Glucose/metabolismo , Glicerol/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/metabolismo , Pichia/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
8.
Biotechnol Adv ; 35(6): 681-710, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760369

RESUMO

The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris.


Assuntos
Engenharia Metabólica/tendências , Pichia/genética , Proteínas Recombinantes/genética , Pichia/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
J Biotechnol ; 235: 121-31, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27084056

RESUMO

Strains of the species Komagataella phaffii are the most frequently used "Pichia pastoris" strains employed for recombinant protein production as well as studies on peroxisome biogenesis, autophagy and secretory pathway analyses. Genome sequencing of several different P. pastoris strains has provided the foundation for understanding these cellular functions in recent genomics, transcriptomics and proteomics experiments. This experimentation has identified mistakes, gaps and incorrectly annotated open reading frames in the previously published draft genome sequences. Here, a refined reference genome is presented, generated with genome and transcriptome sequencing data from multiple P. pastoris strains. Twelve major sequence gaps from 20 to 6000 base pairs were closed and 5111 out of 5256 putative open reading frames were manually curated and confirmed by RNA-seq and published LC-MS/MS data, including the addition of new open reading frames (ORFs) and a reduction in the number of spliced genes from 797 to 571. One chromosomal fragment of 76kbp between two previous gaps on chromosome 1 and another 134kbp fragment at the end of chromosome 4, as well as several shorter fragments needed re-orientation. In total more than 500 positions in the genome have been corrected. This reference genome is presented with new chromosomal numbering, positioning ribosomal repeats at the distal ends of the four chromosomes, and includes predicted chromosomal centromeres as well as the sequence of two linear cytoplasmic plasmids of 13.1 and 9.5kbp found in some strains of P. pastoris.


Assuntos
DNA Fúngico/genética , Genoma Fúngico/genética , Pichia/genética , Processamento Alternativo , Centrômero/genética , Engenharia Genética , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Transcriptoma/genética
10.
ACS Chem Biol ; 11(4): 1039-48, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26771671

RESUMO

Flavin-containing mono-oxygenases are known as potent drug-metabolizing enzymes, providing complementary functions to the well-investigated cytochrome P450 mono-oxygenases. While human FMO isoforms are typically involved in the oxidation of soft nucleophiles, the biocatalytic activity of human FMO5 (along its physiological role) has long remained unexplored. In this study, we demonstrate the atypical in vitro activity of human FMO5 as a Baeyer-Villiger mono-oxygenase on a broad range of substrates, revealing the first example to date of a human protein catalyzing such reactions. The isolated and purified protein was active on diverse carbonyl compounds, whereas soft nucleophiles were mostly non- or poorly reactive. The absence of the typical characteristic sequence motifs sets human FMO5 apart from all characterized Baeyer-Villiger mono-oxygenases so far. These findings open new perspectives in human oxidative metabolism.


Assuntos
Oxigenases/metabolismo , Biocatálise , Humanos
11.
ACS Synth Biol ; 5(2): 172-86, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26592304

RESUMO

The heterologous expression of biosynthetic pathways for pharmaceutical or fine chemical production requires suitable expression hosts and vectors. In eukaryotes, the pathway flux is typically balanced by stoichiometric fine-tuning of reaction steps by varying the transcript levels of the genes involved. Regulated (inducible) promoters are desirable to allow a separation of pathway expression from cell growth. Ideally, the promoter sequences used should not be identical to avoid loss by recombination. The methylotrophic yeast Pichia pastoris is a commonly used protein production host, and single genes have been expressed at high levels using the methanol-inducible, strong, and tightly regulated promoter of the alcohol oxidase 1 gene (PAOX1). Here, we have studied the regulation of the P. pastoris methanol utilization (MUT) pathway to identify a useful set of promoters that (i) allow high coexpression and (ii) differ in DNA sequence to increase genetic stability. We noticed a pronounced involvement of the pentose phosphate pathway (PPP) and genes involved in the defense of reactive oxygen species (ROS), providing strong promoters that, in part, even outperform PAOX1 and offer novel regulatory profiles. We have applied these tightly regulated promoters together with novel terminators as useful tools for the expression of a heterologous biosynthetic pathway. With the synthetic biology toolbox presented here, P. pastoris is now equipped with one of the largest sets of strong and co-regulated promoters of any microbe, moving it from a protein production host to a general industrial biotechnology host.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Metanol/farmacocinética , Pichia , Regiões Promotoras Genéticas , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
12.
Beilstein J Org Chem ; 11: 1741-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664594

RESUMO

Many synthetically useful reactions are catalyzed by cofactor-dependent enzymes. As cofactors represent a major cost factor, methods for efficient cofactor regeneration are required especially for large-scale synthetic applications. In order to generate a novel and efficient host chassis for bioreductions, we engineered the methanol utilization pathway of Pichia pastoris for improved NADH regeneration. By deleting the genes coding for dihydroxyacetone synthase isoform 1 and 2 (DAS1 and DAS2), NADH regeneration via methanol oxidation (dissimilation) was increased significantly. The resulting Δdas1 Δdas2 strain performed better in butanediol dehydrogenase (BDH1) based whole-cell conversions. While the BDH1 catalyzed acetoin reduction stopped after 2 h reaching ~50% substrate conversion when performed in the wild type strain, full conversion after 6 h was obtained by employing the knock-out strain. These results suggest that the P. pastoris Δdas1 Δdas2 strain is capable of supplying the actual biocatalyst with the cofactor over a longer reaction period without the over-expression of an additional cofactor regeneration system. Thus, focusing the intrinsic carbon flux of this methylotrophic yeast on methanol oxidation to CO2 represents an efficient and easy-to-use strategy for NADH-dependent whole-cell conversions. At the same time methanol serves as co-solvent, inductor for catalyst and cofactor regeneration pathway expression and source of energy.

13.
Microb Cell Fact ; 14: 82, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26062974

RESUMO

BACKGROUND: Getting access to authentic human drug metabolites is an important issue during the drug discovery and development process. Employing recombinant microorganisms as whole-cell biocatalysts constitutes an elegant alternative to organic synthesis to produce these compounds. The present work aimed for the generation of an efficient whole-cell catalyst based on the flavin monooxygenase isoform 2 (FMO2), which is part of the human phase I metabolism. RESULTS: We show for the first time the functional expression of human FMO2 in E. coli. Truncations of the C-terminal membrane anchor region did not result in soluble FMO2 protein, but had a significant effect on levels of recombinant protein. The FMO2 biocatalysts were employed for substrate screening purposes, revealing trifluoperazine and propranolol as FMO2 substrates. Biomass cultivation on the 100 L scale afforded active catalyst for biotransformations on preparative scale. The whole-cell conversion of trifluoperazine resulted in perfectly selective oxidation to 48 mg (46% yield) of the corresponding N (1)-oxide with a purity >98%. CONCLUSIONS: The generated FMO2 whole-cell catalysts are not only useful as screening tool for human metabolites of drug molecules but more importantly also for their chemo- and regioselective preparation on the multi-milligram scale.


Assuntos
Escherichia coli/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Preparações Farmacêuticas/metabolismo , Biocatálise , Dinitrocresóis/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Oxigenases de Função Mista/genética , Propranolol/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Trifluoperazina/metabolismo
14.
Chem Commun (Camb) ; 51(9): 1643-6, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25502218

RESUMO

We report for the first time the functional simultaneous expression of nine genes from a single 2A peptide based polycistronic expression construct. The feasibility and arising opportunities for the biosynthetic pathway balancing for chemical production were demonstrated by the co-expression of the violacein and carotenoid biosynthesis pathways.


Assuntos
Enzimas/metabolismo , Pichia/enzimologia , Vias Biossintéticas/genética , Carotenoides/metabolismo , Enzimas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Indóis/metabolismo , Família Multigênica/genética , Pichia/genética
15.
FEBS J ; 280(13): 3094-108, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23552177

RESUMO

The human cytochrome P450 2D6 (CYP2D6) is one of the major human drug metabolizing enzymes and acts preferably on substrates containing a basic nitrogen atom. Testosterone - just as other steroids - is an atypical substrate and only poorly metabolized by CYP2D6. The present study intended to investigate the influence of the two active site residues 216 and 483 on the capability of CYP2D6 to hydroxylate steroids such as for example testosterone. All 400 possible combinatorial mutations at these two positions have been generated and expressed individually in Pichia pastoris. Employing whole-cell biotransformations coupled with HPLC-MS analysis the testosterone hydroxylase activity and regioselectivity of every single CYP2D6 variant was determined. Covering the whole sequence space, CYP2D6 variants with improved activity and so far unknown regio-preference in testosterone hydroxylation were identified. Most intriguingly and in contrast to previous literature reports about mutein F483I, the mutation F483G led to preferred hydroxylation at the 2ß-position, while the slow formation of 6ß-hydroxytestosterone, the main product of wild-type CYP2D6, was further reduced. Two point mutations have already been sufficient to convert CYP2D6 into a steroid hydroxylase with the highest ever reported testosterone hydroxylation rate for this enzyme, which is of the same order of magnitude as for the conversion of the standard substrate bufuralol by wild-type CYP2D6. Furthermore, this study is also an example for efficient human CYP engineering in P. pastoris for biocatalytic applications and to study so far unknown pharmacokinetic effects of individual and combined mutations in these key enzymes of the human drug metabolism.


Assuntos
Citocromo P-450 CYP2D6/metabolismo , Hidroxitestosteronas/metabolismo , Proteínas Mutantes/metabolismo , Testosterona/metabolismo , Substituição de Aminoácidos , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/genética , Ensaios de Triagem em Larga Escala , Humanos , Hidroxilação , Hidroxitestosteronas/química , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Proteínas Mutantes/química , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Estereoisomerismo , Especificidade por Substrato , Testosterona/química
16.
Biotechnol J ; 8(1): 146-52, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23070983

RESUMO

Cytochrome P450 (CYP) enzymes are useful biocatalysts for the pharmaceutical and biotechnological industries. A high-throughput method for quantification of CYP expression in yeast is needed in order to fully exploit the yeast expression system. Carbon monoxide (CO) difference spectra of whole cells have been successfully used for the quantification of heterologous CYP expressed in Escherichia coli in the 96-well format; however, very few researchers have shown whole-cell CO difference spectra with yeast cells using 1-cm path length. Spectral interference from the native hemoproteins often obscures the P450 peak, challenging functional CYP quantification in whole yeast cells. For the first time, we describe the high-throughput determination of CO difference spectra using whole cells in the 96-well format for the quantification of CYP genes expressed in Pichia pastoris. Very little interference from the hemoproteins of P. pastoris enabled CYP quantification even at relatively low expression levels. P. pastoris strains carrying a single copy or three copies of both hCPR and CYP2D6 integrated into the chromosomal DNA were used to establish the method in 96-well format, allowing to detect quantities of CYP2D6 as low as 6 nmol gCDW(-1 ) and 12 pmol per well. Finally, the established method was successfully demonstrated and used to screen P. pastoris clones expressing Candida CYP52A13.


Assuntos
Monóxido de Carbono/análise , Citocromo P-450 CYP2D6/análise , Ensaios de Triagem em Larga Escala/métodos , Pichia/química , Proteínas Recombinantes/análise , Monóxido de Carbono/metabolismo , Citocromo P-450 CYP2D6/biossíntese , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/genética , NADPH-Ferri-Hemoproteína Redutase/análise , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pichia/citologia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Fluorescência/métodos
17.
Microb Cell Fact ; 11: 106, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22876969

RESUMO

BACKGROUND: Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. RESULTS: For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems.Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. CONCLUSIONS: Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared to aqueous systems and even enable simple, continuous or at least high yield long time processes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas/metabolismo , Fígado/metabolismo , Esteroides/metabolismo , Yarrowia/metabolismo , Biomassa , Biotransformação , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Humanos , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ácidos Oleicos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Progesterona/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
18.
Biotechnol J ; 7(11): 1346-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22930520

RESUMO

The processes of drug development require efficient strategies to produce the respective drug metabolites, which are often difficult to obtain. Biotransformations employing recombinant microorganisms as whole-cell biocatalysts have become an attractive alternative to the chemical syntheses of such metabolites. For the first time, the potential of four different microbial systems expressing the human cytochrome P450 2D6 (CYP2D6), which is one of the most important drug-metabolizing enzymes, were compared and evaluated for such applications. The microbial host Pichia pastoris was the most efficient at expressing CYP2D6. Without additional over-expression of chaperons, the achieved yield of CYP2D6 was the highest of microbial hosts reported so far. Therefore, the system described in this study outperformed the previously reported expression of the N-terminally modified enzyme. It was also shown that the activities of the whole-cell conversions of bufuralol in recombinant P. pastoris were significantly higher than the Escherichia coli catalyst, which expressed the same unmodified gene.


Assuntos
Reatores Biológicos/microbiologia , Citocromo P-450 CYP2D6/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomycetales/metabolismo , Biotecnologia/métodos , Biotransformação , Membrana Celular , Clonagem Molecular , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/genética , Escherichia coli/genética , Etanolaminas/metabolismo , Glucose/metabolismo , Humanos , NADPH-Ferri-Hemoproteína Redutase/análise , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Plasmídeos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomycetales/genética , Temperatura
19.
Database (Oxford) ; 2012: bas028, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22730453

RESUMO

Mutational events as well as the selection of the optimal variant are essential steps in the evolution of living organisms. The same principle is used in laboratory to extend the natural biodiversity to obtain better catalysts for applications in biomanufacturing or for improved biopharmaceuticals. Furthermore, single mutation in genes of drug-metabolizing enzymes can also result in dramatic changes in pharmacokinetics. These changes are a major cause of patient-specific drug responses and are, therefore, the molecular basis for personalized medicine. MuteinDB systematically links laboratory-generated enzyme variants (muteins) and natural isoforms with their biochemical properties including kinetic data of catalyzed reactions. Detailed information about kinetic characteristics of muteins is available in a systematic way and searchable for known mutations and catalyzed reactions as well as their substrates and known products. MuteinDB is broadly applicable to any known protein and their variants and makes mutagenesis and biochemical data searchable and comparable in a simple and easy-to-use manner. For the import of new mutein data, a simple, standardized, spreadsheet-based data format has been defined. To demonstrate the broad applicability of the MuteinDB, first data sets have been incorporated for selected cytochrome P450 enzymes as well as for nitrilases and peroxidases. Database URL: http://www.MuteinDB.org.


Assuntos
Bases de Dados de Proteínas , Enzimas/genética , Enzimas/metabolismo , Mutação , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Sistemas de Gerenciamento de Base de Dados , Enzimas/química , Humanos , Interface Usuário-Computador
20.
Chem Biodivers ; 5(8): 1540-1544, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18729090

RESUMO

The reaction of aged carboplatin (reaction of carboplatin in 24 mM NaHCO(3) for 45 h, 37 degrees, pH 8.6) with pBR322 DNA at 0 < r < 2.8, where r = [drug]/[DNA-bp], in 24 mM HEPES buffer, pH 7.4, for 24 h, followed by agarose gel electrophoresis showed DNA mobility changes consistent with unwinding closed circular DNA. However, identical experiments conducted in a two-buffer system, 24 mM HEPES plus 24 mM carbonate, showed no DNA mobility changes, indicating that carbonate blocks formation of the 1,2 intrastrand cross-link on DNA. Studies with aged carboplatin and with cisplatin carried out with ca. 4.0 < r < 10.0 in the two-buffer system show that some DNA binding and unwinding occurs for both drugs. Since carbonate inhibits the binding of aged carboplatin and cisplatin to DNA, carbonate present in the body likely modulates the reactivity of these drugs with a variety of biological targets including DNA.


Assuntos
Carboplatina/química , DNA/química , Bicarbonato de Sódio/farmacologia , Sítios de Ligação , Eletroforese em Gel de Ágar , Bicarbonato de Sódio/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA